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Abstract

There is a large and rapidly growing causal inference literature, yet little is known about the im-
pact of heteroskedasticity in popular causal settings. In observational studies where the presence
of heteroskedasticity can not be ruled out with certainty, its effects on treatment assignment
and response generation must be studied not only because they can be of interest in their own
right, but also because omitted heteroskedasticity can interact with nonlinearities in each case
and impact the bias and consistency properties of estimators which can not be corrected by
standard error adjustments. Our approach is Bayesian and involves specific modeling whose
practical adequacy is addressed through model comparisons. We extend the methodology un-
derlying well-known settings such as the sharp and fuzzy regression discontinuity designs, the
Rubin causal (Roy-type) model, propensity score matching and inverse probability weighting.
Key features of our approach include flexible modeling, the development of customized computa-
tionally efficient estimation algorithms, the ability to recover various functions of the treatment
parameters, and improved efficiency of estimation. Simulation studies demonstrate the effects
of omitted heteroskedasticity and gauge the adequacy of our proposed modeling and estimation
methods, while their practical applicability is studied in three applications. In particular, we
examine the effect of academic probation on subsequent academic performance, the influence of
Medigap on healthcare expenditures, and the impact of COVID-19 vaccination on mental well-
being. These applications illustrate the consequences of misspecification and provide strong
evidence that the dangers of omitted heteroskedasticity should not be ignored.

Keywords: Bayesian estimation; Markov chain Monte Carlo; regression discontinuity; potential
outcomes; propensity score; academic performance; healthcare expenditure; mental health.

1 Introduction

The formulation of an identification framework through which the observed outcomes for the treated

and untreated units can be compared plays a crucial role in observational studies of causal effects.

This importance is underscored by challenges arising from non-random treatment assignment, un-

observed confounders, or the inherent missingess of counterfactual outcomes at the unit level. A
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variety of parametric, semi-parametric and nonparametric approaches have been proposed in the

literature that have dealt with the effects of continuous, binary, and categorical treatments in

non-experimental settings in both classical and Bayesian contexts. Regression discontinuity, Ru-

bin causal (a.k.a. Roy-type) models, and matching estimators, among others, have been proposed

and implemented in applications. Classical approaches have tended to center around estimators

that are robust to potential misspecifications of the data-generating process (DGP), which is often

not explicitly stated, and inference is asymptotic. The Bayesian methods adopted in this paper,

consider the DGP directly and explicitly, leading to finite-sample inferences; possible misspecifi-

cation is handled by allowing for flexible modeling and conducting formal model comparisons and

specification searches.

The Bayesian literature on treatment effect estimation encompasses a diverse array of models.

One strand of this literature has focused on estimating treatment effects in continuous and discrete

(binary, ordinal, and count) instrumental variable models (Koop and Tobias, 2004; Mintz et al.,

2013; Li and Tobias, 2014; Vossmeyer, 2014a), settings with sequential outcomes Munkin (2011), as

well as models with nonparametric endogeneity (Kline and Tobias, 2008; Chib et al., 2009). Chan

and Tobias (2015) propose methods for analyzing models with imperfect instruments which are not

necessarily excluded from the primary regression equation of interest. Moreover, models embodying

both endogeneity and sample selection have been presented in Chib et al. (2009), Vossmeyer (2014b),

and Vossmeyer (2016) (see also van Hasselt, 2014).

Work has also been done within the broader potential outcomes framework for causal analysis

offered by the Rubin causal model Rubin (1974, 1977, 1978, 2004, 2005), often referred to as

a Roy-type model following the work of Roy (1951). Bayesian research in cross-sectional settings

encompasses both continuous and discrete outcome variables, while considering binary or categorical

treatments (see, e.g., Munkin and Trivedi, 1999; Chib and Hamilton, 2000; Munkin, 2003; Munkin

and Trivedi, 2003; Deb et al., 2006; Li and Tobias, 2008, 2011). Extensions to longitudinal settings

have been addressed in Chib and Hamilton (2002) and Jacobi et al. (2016). Estimation has been

approached both by explicitly simulating the counterfactuals from their joint distribution with the

observed outcomes (Li et al., 2004) and by solely involving the observed outcomes Chib (2007).

Heckman et al. (2014) proposed a method to model the joint distribution of potential outcomes by

introducing a latent factor into the analysis.
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Following the seminal work of Rosenbaum and Rubin (1983) and Rosenbaum (1987), substantial

attention has also been directed toward the development and application of methods centered

around the conditional probability of receiving treatment, known as the propensity score (Dehejia

and Wahba, 1999; Imai and van Dyk, 2004; Brand and Halaby, 2006; Zhao, 2008; Caliendo and

Kopeinig, 2008; An, 2010; Zhao et al., 2020; Chaudhuri and Howley, 2022; Chesnaye et al., 2022;

Duan et al., 2023). A recent review of these methodologies is offered in Rosenbaum and Rubin

(2022). Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW)

estimators have found application across a broad range of settings. The framework is elegant

and theoretically powerful; yet, in practice, results from its implementation have often been mixed.

Because propensity score misspecification can compromise the efficacy of PSM and IPTW methods,

formally addressing model uncertainty is a pivotal challenge that warrants careful consideration in

empirical practice.

There has also been a recent surge in interest in causal analysis within the regression disconti-

nuity design (RDD) framework. The RDD approach, introduced in Thistlethwaite and Campbell

(1960) aims to address causal inference in a quasi-experimental settings where treatment assign-

ments are based on an ancillary variable crossing a known cutoff, with a discontinuous treatment

assignment rule at this cutoff point. Sharp RDD has a strict rule for treatment assignment based

on the cutoff, shereas in fuzzy RDD the assignment is probabilistic. There are many different

applications and extensions in the literature (see Hahn et al., 2001; Calonico et al., 2014a,b; Cat-

taneo et al., 2015; Dong, 2015; Dong and Lewbel, 2015; Fletcher and Tokmouline, 2018; Dong,

2019; Wright, 2020; Dong et al., 2023, among others), yet Bayesian analysis has been relatively

recent (Chib and Jacobi, 2016; Branson et al., 2019; Geneletti et al., 2019; Chib et al., 2023). RDD

methods continue to evolve rapidly, offering new perspectives and analytical tools in the study of

causal relationships.

Despite the large and rapidly expanding body of causal methodology, the ramifications of het-

eroskedasticity in many popular treatment models remain poorly understood. One recent excep-

tion is the work of Ferman and Pinto (2019) who show that the presence of heteroskedasticity can

severely impede the performance of standard methods, even in straightforward linear specifications

such as difference-in-differences, especially when confronted with small data sets. In non-linear

contexts, including those mentioned earlier, the detrimental effects of heteroskedasticity in treat-
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ment assignment and response generation are expected to be amplified by any non-linearity and

affect not only the efficiency, but also the bias and consistency properties of traditional estimators.

This challenge underscores the need for a deeper study of the effects of heteroskedasticity, the

development of new methodologies, and their careful implementation in empirical practice.

In this paper, we pursue these objectives by integrating heteroskedasticity into models within

sharp and fuzzy RDD, the Rubin causal (Roy-type) model, and the PSM and IPTW estimation

frameworks. In each setting, we present customized Markov chain Monte Carlo (MCMC) simulation

algorithms that are used for estimation of the model parameters, including the treatment effects,

as well as for estimating marginal likelihoods for the purpose of model comparisons. Marginal

likelihood estimation is approached by calling upon existing techniques when those are available

and by developing novel computationally efficient approaches when needed, e.g., in multi-block

samplers that would otherwise be computationally costly. Furthermore, in each case we conduct

targeted simulation studies in order to illustrate the effects of heteroskedasticity and demonstrate

the performance of the estimation and model comparison algorithms. Finally, we employ the

techniques in several applications to gauge their practical relevance. In particular, we study the

effect of academic probation on subsequent academic performance, the influence of Medigap on

healthcare expenditures, and the impact of COVID-19 vaccination on mental well-being in the UK.

The rest of the paper is organized as follows. In Section 2 we build upon and extend exist-

ing Bayesian methods for the sharp and fuzzy regression discontinuity designs in which we couple

nonparametric modeling of the running variable with a model for heteroskedasticity. In Section 3

we develop modeling and estimation techniques for the analysis of a heteroskedastic Rubin causal

model, while Section 4 focuses on PSM and IPTW estimation under heteroskedasticity. Each sec-

tion presents MCMC estimation algorithms, assesses performance and impact of heteroskedasticity

through simulations, and applies them in practical scenarios. Section 5 offers concluding remarks.

2 Regression Discontinuity Design

This section considers heteroskedastic variants of the sharp and fuzzy RDD framework and provides

the necessary estimation and model comparison techniques. Key parts of the methodology, e.g., the

sampling of heteroskedasticity parameters and the approach for estimating the marginal likelihood,

will continue to play a pivotal role in subsequent sections. Nonparametric functions are employed
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to safeguard against misspecification while improving efficiency by capitalizing on the entirety of

available data (cf. Branson et al., 2019; Chib et al., 2023), as opposed to limiting the analysis to

only a subset of observations around the cutoff point. Techniques are developed for both continuous

and binary outcomes.

2.1 Sharp Regression Discontinuity Design

In the sharp RD setting, the treatment Ti ∈ {0, 1} for unit i = 1, . . . , n is determined by a running

variable wi and a known cutoff w∗ such that Ti = 1{wi ≥ w∗}. The potential outcomes of unit i

are continuous and are denoted by yi0 and yi1 for Ti = 0 and Ti = 1, respectively, and are assumed

to be generated by the additive specification

yij = gj(wi) + x′iβj + εij , εij ∼ N
(
0, σ2

ij

)
, ln(σ2

ij) = z′iγj , for j ∈ {0, 1}, (1)

where we observe yi = (1− Ti) yi0 + Tiyi1. Heterogeneity is allowed to depend on some collection

of variables zi that could include, but is not necessarily limited to, the variables in {xi, wi, Ti} and

their interactions. The model specified in equation (1) is one of structural change between the

treated and untreated samples; thus, intuitively, estimation can simply be performed separately

within each sub-sample. However, estimation has typically been performed under the assumption

β0 = β1, which emphasizes the discontinuity in the running variable and, if confirmed by the data,

makes inference more precise (the assumption will be examined in the application in Section 2.2).

In the literature, the RD average treatment effect (RD ATE) is defined as

τSRD ≡ lim
w↓w∗+

E (Y1|w, xi)− lim
w↑w∗−

E (Y0|w, xi)

= lim
w↓w∗+

E
(
g1(w) + x′iβ1

)
− lim
w↑w∗−

E
(
g0(w) + x′iβ0

)
,

(2)

which, in the special case when β1 = β0, leads to

τSRD = lim
w↓w∗+

g1(w)− lim
w↑w∗−

g0(w) . (3)

The function gj(·) plays a crucial role in this setting and is modeled nonparametrically with only

local penalties for smoothness in order to mitigate the potential for undue influence of values of

w far from w∗ on the estimated values of gj(·) close to w∗ (Gelman and Imbens, 2019). Flexible

functional modeling can be implemented through a variety of approaches including B-splines, re-

gression splines, natural splines, truncated power series, or wavelets, among others (for a review,
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see, e.g., Ruppert et al., 2003; Ahamada and Flachaire, 2010). Here we focus on flexible modeling

through Gaussian random fields Poirier (1973); Shiller (1984); Williams (1998); Fahrmeir and Lang

(2001); Koop and Poirier (2004); Koop et al. (2005); Rue and Held (2005); Chib and Jeliazkov

(2006); Chan and Jeliazkov (2009a); Jeliazkov (2013); Branson et al. (2019) because it allows for

smoothing at every observed value of the running variable (instead of a coarser set of knots), while

retaining key desirable computational properties. Extensions of the model in (1) to an additive

nonparametric mean structure for the covariates xi can be implemented as in Koop et al. (2005),

Panagiotelis and Smith (2008), or Jeliazkov (2013), whereas extensions beyond normality can be

pursued by employing scale mixtures of normals (Andrews and Mallows, 1974) or Dirichlet process

mixtures (Ferguson, 1973; Antoniak, 1974). Chib and Greenberg (2010) combine nonparametric

mean and error distribution modeling.

To facilitate the derivations, arrange the data {Ti, yi, wi, xi}ni=1 so that observations 1 ≤ i ≤ n0

belong to the control group, while the n1 units i ∈ [n0 + 1, n] pertain to the treated group. Let

y0 ≡ (y1, . . . , yn0)′, w0 ≡ (w1, . . . , wn0)′, y1 ≡ (yn0+1, . . . , yn)′, and w1 ≡ (wn0+1, . . . , wn)′. To define

gj(·), denote the unique ordered values of wj as vj , i.e., v0 = (w0,min, . . . , w
∗)′ = (v01, . . . , v0m0)′,

v1 = (w∗, . . . , w1,max)′ ≡ (v11, . . . , v1m1)′, with mj being the number of elements in vj . Note that

the cutoff w∗ appears in both v0 and v1 to enable computation of g0(w∗) and g1(w∗).

With these definitions, the function evaluations gj =
(
g (vj1) , . . . , g

(
vjmj

))′ ≡ (gj1, . . . , gjmj)′,
j ∈ {0, 1}, are modeled as a second order Markov process

gjl =

(
1 +

hjl
hjl−1

)
gjl−1 −

hjl
hjl−1

gjl−2 + µjl,

where hjl ≡ vjl − vjl−1, µjl ∼ N
(

0, τ2
j hjl

)
and the process is initialized at(

gj1
gj2

)
|τ2
j ∼ N

((
gj10

gj20

)
, τ2
jGj0

)
,

where Gj0 is a 2 × 2 symmetric positive definite matrix and τ2 is a smoothness parameter whose

magnitude determines the penalty to deviations from a locally linear relationship. Letting

Hj =



1
1

hj3
hj2

−(1 +
hj3
hj2

) 1

. . .
. . .

. . .
hjm
hjm−1

−(1 +
hjm
hjm−1

) 1

 , Σj =


Gj0

hj3
. . .

hjm

 ,
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we obtain the joint distribution gj |τ2
j ∼ N

(
gj0, τ

2
jK
−1
j

)
, where gj0 = H−1

j (gj10, gj20, 0, . . . , 0)′ and

Kj = H ′jΣ
−1
j Hj . Of key importance is the fact that K is a banded and operations involving it are

of order O(n) (Fahrmeir and Lang, 2001; Chib and Jeliazkov, 2006). With this definition of gj ,

j ∈ {0, 1}, stacking the model in (1), we can write

yj = Qjgj +Xjβj + εj , εj ∼ N (0,Ωj) , Ωj = diag
(
{σ2

ij}
nj
i=1

)
, ln(σ2

ij) = z′iγj ,

where Qj is a n×m incidence matrices with entries Qj (i, k) = 1 if wji = vjk, and 0 otherwise. The

model is completed by the prior distributions

gj |τ2
j ∼ N

(
gj0, τ

2
jK
−1
j

)
, τ2

j ∼ IG (tν0/2, td0/2) , βj ∼ N (bj0, Bj0) , γj ∼ N (γj0,Γj0) , (4)

which, combined with the sampling density

f
(
y|g0, g1, τ

2
0 , τ

2
1 , β0, β1, γ0, γ1

)
= fN (y0|Q0g0 +X0β0,Ω0) fN (y1|Q1g1 +X1β1,Ω1) ,

leads to a joint posterior distribution that can be sampled by the MCMC algorithm presented in Al-

gorithm 1. Precision-based algorithms are used for sampling gj , whereas efficient simulation of γj is

obtained by a Metropolis-Hastings (MH) step with proposal density based on iteratively reweighted

least squares (Chan et al., 2006; Gu et al., 2009; Gamerman, 1997; Nott and Leonte, 2004). This

approach is considerably faster than conventional tailoring by optimization at every MCMC step

and is obtained by constructing a Student’s t proposal density q (γj |γ̂j , Vj) = fTν (γj |γ̂j , Vj) with ν

degrees of freedom, where eij = (yij − gj(wi)− x′iβj) and

ηij = z′iγj + (e2
ij − σ2

ij)/σ
2
ij , ηj =

(
η1j , . . . , ηnj

)′
,

Vj =

(
Γ−1

0j +
1

2
Z
′
jZj

)−1

, γ̂j = Vj

(
Γ−1
j0 γj0 +

1

2
Z ′jηj

)
.

(5)

The treatment effects in equations (2) and (3) can be computed by averaging over the output

of the MCMC sampler and, if needed, the empirical distribution of the covariates {xi, wi, zi} in the

neighborhood of w∗. The homoskedastic model results in the special case when zi = 1. The overall

approach is also easily adaptable to binary outcomes yi as discussed next.

To handle binary outcomes yi ∈ {0, 1}, we use data augmentation (Albert and Chib, 1993) and

introduce the latent variables y∗i such that yi = 1{y∗ ≥ 0} and

y∗ij = gj(wi) + x′iβj + εij , εij ∼ N
(
0, σ2

ij

)
, ln(σ2

ij) = z′iγj , for j ∈ {0, 1} . (6)
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Algorithm 1 (Semi-parametric Sharp RDD)

(1) Sample
[
gj |yj , βj , τ2

j , γj

]
∼ N

(
ĝj , Ĝj

)
, where ĝj = Ĝj

(
1
τ2
j
Kjgj0 +Q′jΩ

−1
j (yj −Xjβj)

)
and

Ĝj =

(
Kj
τ2
j

+Q′jΩ
−1
j Qj

)−1

, j = 0, 1.

(2) Sample [βj |yj , gj , γj ] ∼ N
(
β̂j , B̂j

)
, where β̂j = B̂j

(
B−1
j0 bj0 +X ′jΩ

−1
j (yj −Qjgj)

)
and B̂j =(

B−1
j0 +X ′jΩ

−1
j Xj

)−1
, j = 0, 1. If β0 = β1, sample [β|y, g0, g1, γ0, γ1] ∼ N

(
β̂, B̂

)
, where

β̂ = B̂
(
B−1

0 b0 +X ′Ω−1 (y −Qg)
)
, B̂ =

(
B−1

0 +X ′Ω−1X
)−1

, y = (y′0, y
′
1)′, g = (g′0, g

′
1)′,

X =

(
X0

X1

)
, and Ω =

(
Ω0 0
0 Ω1

)
.

(3) Sample
[
τ2
j |gj

]
∼ IG

(
tνj0+mj

2 ,
tdj0+(gj−gj0)′K(gj−gj0)

2

)
, j = 0, 1.

(4) Sample [γj |yj , gj , βj ], j = 0, 1, using an MH step by drawing a proposed γ†j ∼ q (γj |γ̂j , Vj),
where γ̂j and Vj are computed in (5) using the current value of γj . Also use γ†j in equation (5)

to produce γ̂†j . Accept the proposed γ†j with probability

α(γj , γ
†
j |yj , gj , βj) = min

{
1,
f(yj |gj , βj , γ†j )π(γ†j |γj0,Γj0)

f(yj |gj , βj , γj)π(γj |γj0,Γj0)

q(γj |γ̂†j , Vj)

q(γ†j |γ̂j , Vj)

}
,

otherwise repeat the current value γj in the next MCMC iteration.

For identification purposes, the vector zi, which plays a role in determining the variance, does not

include a constant term (Gu et al., 2009). The variance in the homoskedastic version of the model

is fixed at 1 and is not estimated.

The complete data likelihood can be expressed as

f
(
y, y∗|g0, g1, β0, β1, γ0, γ1, τ

2
0 , τ

2
1

)
=
∏
i:Ti=0

((
fN
(
y∗i |g0(wi) + x′iβ0, σ

2
i0

)
1{y∗i ≥ 0}

)yi (fN (y∗i |g0(wi) + x′iβ0, σ
2
i0

)
1{y∗i < 0}

)1−yi)
×
∏
i:Ti=1

((
fN
(
y∗i |g1(wi) + x′iβ1, σ

2
i1

)
1{y∗i ≥ 0}

)yi (fN (y∗i |g1(wi) + x′iβ1, σ
2
i1

)
1{y∗i < 0}

)1−yi) ,
which, combined with the priors in (4) produces the joint posterior that is sampled in Algorithm 2.

Note that Algorithms 1 and 2 are closely related, but the latter makes use of the suitably generated
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latent {y∗i } instead of the observed {yi}; both algorithms also trivially handle homoskedasticity.

Finally, for computing RD ATE in equations (2)-(3) in the case of a binary outcome, it is helpful

to recognize that E (Yj |w, xi, zi) is given by Φ
(
(gj(w) + x′iβj)/

√
exp (z′iγj)

)
, which is averaged

over the MCMC draws and covariates. Accounting for both covariate variability and estimation

uncertainty is essential in this context because of the inherent nonlinearity of the estimand (see,

e.g., Verlinda, 2006; Jeliazkov and Vossmeyer, 2018).

Algorithm 2 (Semi-parametric Sharp RDD with Binary Outcomes)

(1) Sample
[
gj |y∗j , βj , τ2

j , γj

]
∼ N

(
ĝj , Ĝj

)
, where ĝj = Ĝj

(
1
τ2
j
Kjgj0 +Q′jΩ

−1
j

(
y∗j −Xjβj

))
and Ĝj =

(
Kj
τ2
j

+Q′jΩ
−1
j Qj

)−1

, j = 0, 1.

(2) Sample
[
βj |y∗j , gj , γj

]
∼ N

(
β̂j , B̂j

)
, where β̂j = B̂j

(
B−1
j0 bj0 +X ′jΩ

−1
j

(
y∗j −Qjgj

))
and

B̂j =
(
B−1
j0 +X ′jΩ

−1
j Xj

)−1
, j = 0, 1. If β0 = β1, sample [β|y∗, g0, g1, γ0, γ1] ∼ N

(
β̂, B̂

)
,

where β̂ = B̂
(
B−1

0 b0 +X ′Ω−1 (y∗ −Qg)
)
, B̂ =

(
B−1

0 +X ′Ω−1X
)−1

, y∗ =
(
y∗
′

0 , y
∗′
1

)′
, g =

(g′0, g
′
1)′, X =

(
X0

X1

)
, and Ω =

(
Ω0 0
0 Ω1

)
.

(3) Sample
[
τ2
j |gj

]
∼ IG

(
tνj0+mj

2 ,
tdj0+(gj−gj0)′K(gj−gj0)

2

)
, j = 0, 1.

(4) Sample
[
γj |y∗j , gj , βj

]
, j = 0, 1, using an MH step by drawing a proposed γ†j ∼ q (γj |γ̂j , Vj),

where ei = y∗i − gj(wi)−x′iβj and γ̂j and Vj are computed in (5) using the current value of γj
and y∗j . Also use γ†j in equation (5) to produce γ̂†j . Accept the proposed γ†j with probability

α = min

{
1,
f(y∗j |gj , βj , γ

†
j )π(γ†j |γj0,Γj0)q(γj |γ̂†j , Vj)

f(y∗j |gj , βj , γj)π(γj |γj0,Γj0)q(γ†j |γ̂j , Vj)

}
.

otherwise repeat the current value γj in the next MCMC iteration.

(5) Sample
[
y∗ij |yij , gj , βj , γj

]
∼ TNBi (gj (ωi) + x′iβj , exp (z′iγj)), i = 1, . . . , n, j = 0, 1, where

Bi = (−∞, 0] if yi = 0, and Bi = (0,∞) if yi = 1.
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2.1.1 Bayesian Model Comparison and Marginal Likelihood Estimation

In the presence of multiple competing models, each reflecting alternative hypotheses about the data

y, Bayesian model comparison provides a systematic approach for addressing model uncertainty.

Specifically, by Bayes’ formula, the posterior probability of model Ms can be expressed as

P (Ms|y) ∝ P (Ms)m(y|Ms),

where P (Ms) represents the prior probability of model Ms and m(y|Ms) denotes its marginal

likelihood m(y|Ms) =
∫
f(y|θs,Ms)π(θs|Ms) dθs, where f(y|θs,Ms) is the likelihood function

and π(θs|Ms) is the prior density on the parameters θs in model Ms. An important approach for

estimating the marginal likelihood was introduced by (Chib, 1995) based on the recognition that

m(y|Ms) =
f(y|θs,Ms)π(θs|Ms)

π(θs|y,Ms)
, (7)

which holds for any θs in the parameter space. The terms in the numerator of equation (7) are

often available directly, so the primary challenge is in estimating the posterior density π(θs|y,Ms)

in the denominator of equation (7). In practice, the right-hand side of equation (7) is evaluated at

some appropriate point θ∗s , typically taken to be the posterior mean or mode.

Marginal likelihoods, and their ratios known as Bayes factors (Kass and Raftery, 1995), serve

as a cornerstone for implementing Bayesian model comparison. The approach exhibits a number of

desirable properties. For instance, it provides finite-sample model probabilities that can be used for

model averaging or model choice, and does not demand that competing models be nested, enhancing

its applicability across diverse model structures. In addition, it exhibits appealing asymptotic

behavior, giving rise to the well-known information criterion proposed by Schwarz (1978). An

often underappreciated aspect of marginal likelihoods is that they provide a measure of sequential

out-of-sample predictive fit, which can be seen by writing

m(y|Ms) =
n∏
i=1

m(yi|{yj}j<i,Ms)

=

n∏
i=1

∫
f(yi|{yj}j<i, θs,Ms)π(θs|{yj}j<i,Ms) dθs.

Thus, model adequacy, as indicated by the marginal likelihood, corresponds to cumulative out-

of-sample predictive performance. This assessment involves evaluating the fit of yi based on the
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posterior density, utilizing data {yj}j<i up to the ith data point. Unlike in-sample measures

conditioned on the entire dataset y or split-sample comparisons sensitive to sample selection, the

marginal likelihood remains unaffected by permutations in the order of data.

Thus, model adequacy, as captured by the marginal likelihood, corresponds to its cumulative

out-of-sample predictive record where the fit of yi is measured with respect to the posterior density

using data {yj}j<i up to the ith data point. This is in sharp contrast to in-sample measures of

fit that condition on the entire data set y, or split-sample comparisons in which the outcome may

depend on the choice of estimation and comparison samples. In contrast, the marginal likelihood

is invariant to permutations in the indices of the data, so that the same m(y|Ms) will be obtained

if the data are arbitrarily rearranged.

To simplify the notation in the remainder of our discussion, we suppress the model indicator

Ms and focus on the case where the parameter vector consists of several blocks θ = (θ′1, . . . , θ
′
B)′.

To handle this case, the posterior density in the denominator of (7), evaluated at the point θ∗, can

be decomposed as

π(θ∗|y) = π(θ∗1|y)π(θ∗2|y, θ∗1) · · · π(θ∗B|y, θ∗1, . . . , θ∗B−1),

where individual components π(θ∗b |y, {θ∗s}(s<b)) on the right-hand side can be evaluated as

π(θ∗b |y, {θ∗s}(s<b)) = E
{
π
(
θ∗b |y, {θ∗s}(s<b), {θs}(s>b)

)}
(8)

when the full-conditional density π(θ∗b |y, {θ∗s}(s<b), {θs}(s>b)) is known (Chib, 1995), or as

π(θ∗b |y, {θ∗s}(s<b)) =
E
{
α
(
θb, θ

∗
b |y, {θ∗s}(s<b), {θs}(s>b)

)
q
(
θb, θ

∗
b |y, {θ∗s}(s<b), {θs}(s>b)

)}
E
{
α
(
θ∗b , θb|y, {θ∗s}(s<b), {θs}(s>b)

)} (9)

when the full-conditional density is non-standard and sampling requires the MH algorithm (Chib

and Jeliazkov, 2001). The expectation in equation (8) is with respect to π
(
{θs}(s>b)|y, {θ∗s}(s<b)

)
,

whereas the expectations in the numerator and denominator of equation (9) are evaluated using

π
(
{θs}(s≥b)|y, {θ∗s}(s<b)

)
and q

(
θ∗b , θb|y, {θ∗s}(s<b), {θs}(s>b)

)
π
(
{θs}(s>b)|y, {θ∗s}(s<b)

)
, respectively.

Estimation of the marginal likelihood could, therefore, become computationally intensive as it

requires additional simulation of {θs}(s≥b) in reduced runs where {θ∗s}(s<b) are held fixed.

To deal with this problem and improve computational efficiency, we group all parameter blocks

that are sampled from known densities into the set ψ = {ψ1, . . . , ψR}, whereas latent data and
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parameters that are sampled from non-standard distributions are denoted by ξ. We propose esti-

mation of the joint ordinate of the blocks in ψ based on the invariance condition of Markov chains

(Ritter and Tanner, 1992; Jeliazkov and Lee, 2010) as

π (ψ∗|y) = E {K (ψ,ψ∗|y, ξ)} , (10)

where K(·) represents the Gibbs transition kernel

K (ψ,ψ∗|y) =
R∏
r=1

π
(
ψ∗r |y, {ψ∗s}(s<r), {ψs}(s>r), ξ

)
,

with draws of (ψ, ξ) ∼ π(ψ, ξ|y) obtained in the main MCMC run. This method avoids the compu-

tation of the ordinates for {ψ1, . . . , ψR} individually, which obviates the need for reduced runs for

those densities. In the sharp RDD case, ψ = {β0, g0, τ
2
0 , β1, g1, τ

2
1 }, while ξ = γ with γ = {γ0, γ1} for

continuous outcomes and ξ = {γ, {y∗i0}, {y∗i1}} when outcomes are binary. The marginal likelihood

in the sharp RDD case with continuous outcomes can be succinctly expressed as

m̂ (y) =
f (y|ψ∗, γ∗)π (ψ∗, γ∗)

π (ψ∗|y)π (γ∗|y, ψ∗)
,

where π(ψ∗|y) can be estimated using equation (10) with draws from the main MCMC run, and

π(γ∗|y, ψ∗) is obtained by equation (9), which requires a single reduced run. The computation in

the binary case is done analogously, but integration is also done over the latent {y∗ij}.

2.1.2 Simulation Study

In this section, we conduct targeted simulations to assess the influence of ignored heteroskedasticity,

evaluate the performance of the MCMC algorithm, and examine the effectiveness of the proposed

model comparison approach. We simulate the data from

g0 (w) = 1− sin (w + 1) + (w + 1)2 , g1 (w) = −1− sin (w) + w2, w ∼ U [−1, 1] ,

γj ∼ N (0, I) , βj ∼ N (0, I) , X ∼ N (0, I) , Z = (1, w,X1) ,

where X1 is the first column of the generated covariates X. We report means, standard deviations,

and 95% credible intervals of the posterior distribution for the treatment effect in each model.

Additionally, we present marginal likelihood estimates to facilitate model comparisons. We also

report the RD ATE estimates, standard errors and 95% confidence intervals provided by RDRobust

(Calonico et al., 2017).
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The marginal likelihood and the estimated treatment effect is presented in Table 1. The het-

eroskedastic model is supported by the data in all scenarios. As the sample size increases, both

homoskedastic and heteroskedastic models yield point estimates that approach the true treatment

effect. However, as the sample size increases, the evidence in favor of the heteroskedastic model

grows based on the marginal likelihood estimates reported in Table 1. The Bayesian models pro-

vide more precise estimates than RDRobust, because the latter relies only on data around the

cutoff (sample sizes are reported in Table 1). Sensitivity analysis confirmed that the reduction in

variability is not driven by the priors. Table 17 in Appendix A presents details on these results.

A second set of simulation was conducted under the restriction β0 = β1, with all other pa-

rameters sampled as before. The results, presented in Table 2, support the aforementioned con-

clusions, namely that the heteroskedastic model yields more efficient estimates RDRobust and the

homoskedastic specification.

Table 1: RD ATE with Continuous Outcome Variable (β1 6= β0)

Model True ATE RD ATE SD 95% CI Marg. Like. Obs.

n = 500
Homoskedastic -2.2357 -2.3638 0.2514 (-2.8657, -1.8774) -765.22 (230, 270)
Heteroskedastic -2.2357 -2.2616 0.1774 (-2.6127, -1.9173) -617.77 (230, 270)

RDRobust -2.2357 -2.6305 0.6780 ( -4.1775, -1.0734) (49, 68)

n = 5000
Homoskedastic -2.2195 -2.0420 0.1289 (-2.2936, -1.7872) -8711.93 (2480, 2520)
Heteroskedastic -2.2195 -2.0996 0.1062 (-2.3055, -1.8885) -7929.93 (2480, 2520)

RDRobust -2.2195 -2.1892 0.2142 (-2.7119, -1.7242) (955, 994)

n = 50000
Homoskedastic -2.2092 -2.1987 0.0409 (-2.2793, -2.1191) -68715.40 (24873, 25127)
Heteroskedastic -2.2092 -2.1993 0.0283 (-2.2550,-2.1439) -59044.64 (24873, 25127)

RDRobust -2.2092 -2.0633 0.0690 (-2.2046, -1.8831) (7983, 8124)

SD: Standard deviation for the Bayesian methods; Standard Error for RDRobust.
CI: Credible Interval for the Bayesian methods; Confidence Interval fro RDRobust.
Obs: Number of observations used in the analysis.

Table 2: ATE with Continuous Outcome Variable (β1 = β0)

Model True ATE RD ATE SD 95% CI Marg. Like. Obs.

n = 500
Homoskedastic -2.1585 -2.3144 0.2276 (-2.7632, -1.8710) -784.62 (238, 262)
Heteroskedastic -2.1585 -2.3964 0.1764 (-2.7449, -2.0534) -680.02 (238, 262)

RDRobust -2.1585 -2.3896 0.2250 ( -2.8610, -1.8196) (72, 80)

n = 5000
Homoskedastic -2.1585 -2.0998 0.1131 (-2.3201, -1.8770) -7811.57 (2529, 2471)
Heteroskedastic -2.1585 -2.1142 0.1097 (-2.3281, -1.8978) -7621.34 (2529, 2471)

RDRobust -2.1585 -1.9219 0.1603 (-2.2203, -1.5017) (2424, 2576)

n = 50000
Homoskedastic -2.1585 -2.148 0.0393 (-2.2242, -2.0698) -54592.15 (24815, 25185)
Heteroskedastic -2.1585 -2.1579 0.0292 (-2.2149, -2.1002) -48880.91 (24815, 25185)

RDRobust -2.1585 -2.1474 0.0323 (-2.2132, -2.0644) (7429, 7479)
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To demonstrate the pitfalls of only employing data within a small band around w∗, we present

a study with a sample size n = 5000 from the following DGP

g0 (w) = sin (w) + exp
(
−20 (w + 0.5)2

)
, g1 (w) = 1.2− sin (w)− exp

(
−20 (w − 0.5)2

)
,

γ0 = (−2, 2, 1)′ , γ1 = (−2, 2,−1)′ , βj ∼ N (0, I) , X ∼ N (0, I) , Z = (1, ||w| − 1.5|, X1) .

in a case where the cutoff point is in a low density region of w presented in Figure 1. In this scenario,

the paucity of observations around the cutoff is compounded by more pronounced heteroskedasticity

in that region. The generated data passed the density test (McCrary, 2008) with p-value 0.4655.

The estimated RD ATE is provided in Table 3. The estimated parameter ĝ0 and ĝ1 can be found

in Figure 2. In this context, the estimates from the homoskedastic model can be adversely affected

by the outliers near the cutoff point, which ultimately resulted in significantly biased RD ATE

estimates. On the other hand, the figure shows that the heteroskedastic model can estimate the true

function well, owing to the fact that the data points are weighted correctly in the heteroskedastic

context. In this scenario, RDRobust yielded a notably wide 95% confidence interval, primarily due

to the dramatically smaller number of data points near the cutoff. We take this as a warning to

account for the distribution of w as well as the behavior of the heteroskedasticity around the cutoff

in determining the merits of alternative estimators.

Figure 1: Data and Running Variable Density

(a) Data (b) Running Variable Density

Finally, we simulate data for settings with binary outcomes using (6) with

g0 (w) = 1− sin (w + 1) + (w + 1)2 , g1 (w) = −1− sin (w) + w2, w ∼ U [−1, 1] ,

γ0 = γ1 = 2, βj ∼ N (0, I) , X ∼ N (0, I) , Z = (||w| − 1.5|) .
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Table 3: RD ATE Results

Model True ATE RD ATE SD 95% CI Marg. Like. Obs.

Homoskedastic 1.2005 2.2085 0.4174 (1.3831, 3.0230) -7642.76 (2489, 2511)
Heteroskedastic 1.2005 1.3185 0.3986 (0.5307, 2.0935) -6066.56 (2489, 2511)

RDRobust 1.2005 2.0958 0.8682 (-0.1510, 4.1174) (202, 190)

Figure 2: Estimated Parameters ĝ

Estimates of the nonparametric functions ĝ0 and ĝ1 are depicted in Figure 3. Table 4 presents

the RD ATE and marginal likelihood statistics. As the sample size increases, the heteroskedastic

model provides a closer approximation, whereas both the homoskedastic model and RDRobust

exhibit inconsistencies while also significantly understating the estimation variability. The impact

of ignoring heteroskedasticity is amplified when the non-linear features of the model become more

prominent. With larger samples, the evidence in support of the heteroskedastic specification grows

stronger as demonstrated by the marginal likelihood results in Table 4.

Figure 3: Estimated g with Binary Outcome Variable

(a) N= 500 (b) N = 5000 (c) N = 50000
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Table 4: RD ATE with Binary Outcome Variable

Model True ATE RD ATE SD 95% CI Marg. Like. Obs.

n = 500
Homoskedastic -0.2303 -0.1931 0.1003 (-0.3877,-0.0056) -306.18 (262, 238)
Heteroskedastic -0.2303 -0.2377 0.1005 (-0.4327,-0.0382) -301.29 (262, 238)

RDRobust -0.2303 -0.2262 0.1318 (-0.5405,0.0801) (109, 91)

n = 5000
Homoskedastic -0.2579 -0.2212 0.0433 (-0.3061, -0.1363) -2811.87 (2529, 2471)
Heteroskedastic -0.2579 -0.2997 0.0488 (-0.3945,-0.2037) -2770.39 (2529, 2471)

RDRobust -0.2579 -0.2218 0.0480 (-0.3411,-0.1167) (941, 932)

n = 50000
Homoskedastic -0.2566 -0.1684 0.0171 (-0.2019,-0.1348) -27844.76 (24815, 25185)
Heteroskedastic -0.2566 -0.2631 0.0195 (-0.3011,-0.2247) -27470.87 (24815, 25185)

RDRobust -0.2566 -0.1756 0.0174 (-0.2194,-0.1386) (6949, 7155)

2.2 Application: The Effect of Academic Probation on Student Performance

Academic probation is commonly used as a catalyst to motivate students and improve effort levels.

Fletcher and Tokmouline (2018) and Wright (2020) employed RDD to evaluate the impact of

academic probation on academic performance. We use public data from the Texas Higher Education

Opportunity Project (THEOP) to study the impact of academic probation on students’ academic

performance. We performed analysis employing both homoskedastic and heteroskedastic models,

using model comparison techniques to assess their practical relevance in this context.

The treated group consists of students who received academic probation at the end of their

first semester. The outcome variables are the students’ GPA in two subsequent semesters as well

as their graduation status. We use the longitudinal administrative data from University of Texas,

Austin, for students admitted from 1991 through 2000. Students are placed on probation (the

treatment) if their cumulative GPA falls below 2.0; such students must raise their GPA above the

threshold or face dismissal from the university. Covariates in this setting include the student’s

gender, citizenship, race, standardized SAT score, high school decile, an indicator of private high

school attendance, and an indicator if the student has a major in the first semester. Summary of

statistics for the data are presented in Tables 5, 6 and 7.

One key underlying assumption for the sharp RD design is that the students near the threshold

can not manipulate their GPA. Following McCrary (2008), a density test of the running variable

was performed, resulting in a t-statistic of −1.0027 and a corresponding p-value of 0.3160. There-

fore, there is no evidence to suggest that students manipulate their GPA to avoid the treatment.

Additionally, since the GPA data is rounded to the nearest tenth, it is possible that some students
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with GPA of [1.95, 2.05) are misclassified. To address this issue, students who have a first semester

cumulative GPA of exactly 2.0 are eliminated from the sample (Fletcher and Tokmouline, 2018),

while their covariates X and Z are retained for the purpose of treatment effect estimation.

Table 5: Summary of Statistics: Second Semester GPA

Control (37980) Treatment (5789)
Variable Mean SD Mean SD

Female 0.516 0.500 0.386 0.487
Non US Citizen 0.003 0.052 0.002 0.039

Minority 0.032 0.175 0.068 0.252
SAT (Standardized) 0.081 0.997 -0.398 0.911

Second Decile (High School) 0.264 0.441 0.309 0.462
Third Decile (High School) 0.119 0.324 0.209 0.406

Fourth Decile or Below (High School) 0.082 0.275 0.224 0.417
Private High School 0.051 0.220 0.047 0.212

Has Major 0.754 0.431 0.696 0.460
Second semester term GPA 3.003 0.762 2.026 0.892
First semester term GPA 3.205 0.546 1.335 0.495

Table 6: Summary of Statistics: Third Semester GPA

Control (36738) Treatment (4366)
Variable Mean SD Mean SD

Female 0.515 0.500 0.390 0.488
Non US Citizen 0.003 0.053 0.002 0.043

Minority 0.032 0.176 0.066 0.248
SAT (Standardized) 0.068 0.997 -0.401 0.917

Second Decile (High School) 0.263 0.440 0.311 0.463
Third Decile (High School) 0.119 0.323 0.207 0.405

Fourth Decile or Below (High School) 0.082 0.274 0.227 0.419
Private High School 0.051 0.221 0.049 0.217

Has Major 0.755 0.430 0.694 0.461
Third semester term GPA 2.949 0.805 2.168 0.892
First semester term GPA 3.213 0.544 1.414 0.445

Our analysis centers on the effect of heteroskedasticity and sidesteps potential complications

that may arise due to sample selection or endogeneity related to the decision to stay in school (see,

e.g., Dong, 2019). Such complications are unlikely to be important at short time horizons, such

as the second and third semester, where we see a strong impact on GPA, but could be relevant

in the longer run where our results are inconclusive. In particular, the estimated functions ĝ0 and

ĝ1 are represented in Figure 4, whereas estimates of the RD ATE and the marginal likelihoods

are provided in Table 8. Notably, academic probation is practically relevant with a considerable

positive effect on subsequent semester GPAs in all the Bayesian models, while the estimated impact

from RDRobust is not always of the expected sign, and is generally lacks statistical significance.
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Table 7: Summary of Statistics: Graduation

Control (38525) Treatment (6494)
Variable Mean SD Mean SD

Female 0.517 0.500 0.387 0.487
Non US Citizen 0.003 0.052 0.001 0.037

Minority 0.032 0.175 0.066 0.248
SAT (Standardized) 0.084 0.997 -0.378 0.917

Second Decile (High School) 0.264 0.441 0.305 0.461
Third Decile (High School) 0.119 0.324 0.213 0.409

Fourth Decile or Below (High School) 0.082 0.275 0.225 0.418
Private High School 0.051 0.220 0.048 0.214

Has Major 0.753 0.431 0.693 0.461
4-Year Graduation 0.527 0.499 0.126 0.332

Graduation 0.802 0.399 0.329 0.470

The impact of academic probation on graduation rates is indeterminate according to the results of

all models. Additionally, the marginal likelihoods suggest that the heteroskedastic model, with the

constraint that β0 = β1, is preferred in all scenarios.

Table 8: RD ATE Results

Outcomes Models RD ATE Std. 95% CI Marg. Like. Obs.

GPA (2nd Semester)

Homoskedastic 0.1709 0.0489 (0.0745, 0.2664) -42714.08 (37980, 5789)
Homoskedastic (β0 = β1) 0.1705 0.0501 (0.0715, 0.2684) -42677.36 (37980, 5789)

Heteroskedastic 0.1731 0.0556 (0.0641, 0.2825) -41248.43 (37980, 5789)
Heteroskedastic(β0 = β1) 0.1709 0.0564 (0.0603, 0.2820) -41211.59 (37980, 5789)

RDRobust -0.1434 0.1022 (-0.4538, 0.2644) (1937, 3030)

GPA (3rd Semester)

Homoskedastic 0.1567 0.0570 (0.0461, 0.2700) -44410.90 (36738, 4366)
Homoskedastic (β0 = β1) 0.1410 0.0580 (0.0282, 0.2561) -44383.80 (36738, 4366)

Heteroskedastic 0.1391 0.0597 (0.0239, 0.2581) -43617.56 (36738, 4366)
Heteroskedastic(β0 = β1) 0.1232 0.0399 (0.0063, 0.2436) -43592.42 (36738, 4366)

RDRobust -0.1357 0.1070 (-0.4276, 0.3372) (1671, 2824)

4-Year Graduation

Homoskedastic -0.0198 0.0224 (-0.0633, 0.0246) -27659.71 (38525, 6494)
Homoskedastic (β0 = β1) -0.0249 0.0223 (-0.0678, 0.0195) -27631.28 (38525, 6494)

Heteroskedastic -0.0286 0.0218 (-0.0706, 0.0147) -27642.73 (38525, 6494)
Heteroskedastic(β0 = β1) -0.0301 0.0214 (-0.0717, 0.0125) -27619.22 (38525, 6494)

RDRobust -0.0343 0.0535 (-0.3026, 0.0796) (2022, 3138)

Graduation

Homoskedastic 0.0213 0.0238 (-0.0254, 0.0679) -21773.71 (38525, 6494)
Homoskedastic (β0 = β1) 0.0129 0.0239 (-0.0338, 0.0601) -21752.81 (38525, 6494)

Heteroskedastic 0.0070 0.0233 (-0.0386, 0.0525) -21754.73 (38525, 6494)
Heteroskedastic(β0 = β1) 0.0114 0.0237 (-0.0352, 0.0578) -21749.15 (38525, 6494)

RDRobust -0.0074 0.0627 (-0.3038, 0.1396) (2022, 3138)
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Figure 4: Estimated Nonparametric Parameters

(a) Second-Semester GPA (b) Third-Semester GPA

(c) 4-Year Graduation Rate (d) Graduation Rate

2.3 Fuzzy Regression Discontinuity Design

In this section, we present a Bayesian fuzzy RD model and outline the corresponding estimation

algorithm. To help illustrate this model, we employ simulations. Following Chib et al. (2023), we

posit the existence of an unobserved discrete confounding variable s which categorizes individuals

into one of these three types: compliers (denoted as c), never-takers (denoted as n) who never take

the treatment, and always-takers (denoted as a) who always take the treatment. The treatment

status for compliers is T = 1{w ≥ w∗|s = c}. The sample data in the fuzzy RD case is summarized

by Table 9.
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Table 9: Fuzzy RD Data

w < w∗ w ≥ w∗

T = 0 c, n n
T = 1 a c, a

The model can be specified as

s = c : T = 1{w ≥ w∗}, yij = gj (wi) + x′iβj + εij , εij ∼ N
(
0, σ2

ij

)
, ln

(
σ2
ij

)
= Z ′ijγj

s = a : T = 1, yi = ga (wi) + x′iβa + εia, εia ∼ N
(
0, σ2

ia

)
, ln

(
σ2
ia

)
= Z ′iaγa

s = n : T = 0, yi = gn (wi) + x′iβn + εin, εin ∼ N
(
0, σ2

in

)
, ln

(
σ2
in

)
= Z ′inγn

P (s = k) = qk > 0, ∀k ∈ {c, a, n}, qc + qn + qa = 1.

The RD ATE is defined as

τFRD ≡ lim
z↓τ+

E (Y1|w, xi, s = c)− lim
z↑τ−

E (Y0|w, xi, s = c)

= lim
w↓w∗+

E
(
g1(w) + x′iβ1

)
− lim
w↑w∗−

E
(
g0(w) + x′iβ0

)
.

The likelihood function is expressed as

L =
∏
i∈I00

(
qcfN

(
yi|g0(wi) + x′iβ0, σ

2
i0

)
+ qnfN

(
yi|gn(wi) + x′iβn, σ

2
in

))
∏
i∈I10

qnfN
(
yi|gn(wi) + x′iβn, σ

2
in

) ∏
i∈I01

qafN
(
yi|ga(wi) + x′iβa, σ

2
ia

)
∏
i∈I11

(
qcφ

(
yi|g1(wi) + x′iβ1, σ

2
i1

)
+ qafN

(
yi|ga(wi) + x′iβa, σ

2
ia

))
where IiT is the group of observations where i = 1{w ≥ w∗}, T is the treatment variable, and φ is

the probability density function (PDF) of the normal distribution.

We specify the prior distribution of q = (qa, qn, qc) as q ∼ Dir (na0, nn0, nc0). All the other

parameters follows the same prior distribution as discussed in section 2.1. The vectors ga and gn

are of dimension m = m0 + m1, where m0 is the dimension of vector v0, and m1 is the dimension

of vector v1. The unique ordered values of the running variable w0 and w1, denoted by v0 and

v1. The function evaluations g0 and g1 are vectors of dimension m0 and m1, respectively. In the

estimation process, the nonparametric functions in each group are updated using both the prior

information and observations that were categorized into this specific group in each iteration. The
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posterior distribution for the type variables si, i = 1, . . . , n, is specified as

Pr
(
si = c|yi, gj , βj , τ2

j , γj
)
∝ qcfN

(
yi|gi(wi) + x′iβj , σ

2
ij

)
,

P r
(
si = n|yi, gn, βn, τ2

n, γn
)
∝ qnfN

(
yi|gn(wi) + x′iβn, σ

2
in

)
,

P r
(
si = a|yi, ga, βa, τ2

a , γa
)
∝ qafN

(
yi|ga(wi) + x′iβa, σ

2
ia

)
.

(11)

The joint posterior distribution can be sampled as in Algorithm 3. We conducted a simulation

study to assess the algorithm’s performance and evaluate the influence of heteroskedasticity within

the framework of the fuzzy RD model. The simulated data are visualized in Figure 5. In the first

sample, the data for each group are well-separated, while in the second sample, the data for each

group are mixed together. The nonparametric functions estimated for each group are presented in

Figures 6 and 7. In this context, it is important to highlight the possibility of misclassification and

label switching, which can occur when the clusters are not well-separated (Celeux, 1998). Hence,

we advise practitioners to carefully examine their results prior to drawing definitive conclusions in

applications where clusters are not well-separated, as there is no current consensus solution to the

problems present in this context.

Figure 5: Simulated Data

(a) Well-separated Sample (b) Poorly-separated Sample

3 Rubin causal model (Roy-type model)

In this section, we introduce a potential outcome framework (Roy, 1951; Rubin, 1974, 1977, 1978,

2004, 2005) with self-selection for estimating the treatment effect, following the approach outlined

in Chib (2007). We assume that there are two potential outcome variables y0 and y1 for the treated
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Algorithm 3 (Semi-parametric Fuzzy RDD)

(1) Sample the type variables {si} from the posterior distribution in Equation (11).

(2) Sample q = (qa, qn, qc) ∼ Dir (na0 + na, nn0 + nn, nc0 + nc), where na, nn and nc are the
sample size of the observations that are categorized into always-takers, never-takers and
compliers correspondingly in the previous step.

(3) For all possible values of ν, we update gj using the samples that were categorized as

compliers in the previous step. We sample
[
gj |yj , βj , τ2

j , γj

]
∼ N

(
ĝj , Ĝj

)
, where Ĝj =(

Kj
τ2
j

+Q′jΩ
−1
j Qj

)−1

and ĝj = Ĝj

(
1
τ2
j
Kjgj0 +Q′jΩ

−1
j (yj −Xjβj)

)
. We repeat this step for

all the compliers and never-takers.

(4) Sample [βj |yj , gj , γj ] ∼ N
(
β̂j , B̂j

)
, where B̂j =

(
B−1
j0 +X ′jΩ

−1
j Xj

)−1
, and β̂j =

B̂j

(
B−1
j0 bj0 +X ′jΩ

−1
j (yj −Qjgj

)
. Sample [βa|ya, ga, γa], and [βn|yn, gn, γn] in a similar way.

(5) Sample
[
τ2
j |gj

]
∼ IG

(
tνj0+mj

2 ,
tdj0+(gj−gj0)′Kj(gj−gj0)

2

)
. Repeat this step to sample

[
τ2
a |ga

]
and

[
τ2
n|gn

]
.

(6) Sample [γj |yj , gj , βj ] using an MH step by drawing a proposal value γ†j ∼ q (γj |γ̂j , Vj), where

γ̂j and Vj are computed as in (5) using the current value of γj . Also use γ†j in equation (5)

to produce γ̂†j and accept the proposed γ†j with probability

α(γj , γ
†
j |yj , gj , βj) = min

{
1,
f(yj |gj , βj , γ†j )π(γ†j |γj0,Γj0)

f(yj |gj , βj , γj)π(γj |γj0,Γj0)

q(γj |γ̂†j , Vj)

q(γ†j |γ̂j , Vj)

}
,

otherwise the current value γj is repeated in the next MCMC iteration. We repeat this step
for always-takers and never-takers to sample [γa|ya, ga, βa] and [γn|yn, gn, βn].
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Figure 6: Well-separated Data

(a) Heteroskedastic (b) Homoskedastic

Figure 7: Poorly-separated Data

(a) Heteroskedastic (b) Homoskedastic

and untreated states. The binary treatment status T is determined by a latent variable T ∗ and

T = 1{T ∗ ≥ 0}. We also assume that there is heteroskedasticity in both the treatment assignment

and the outcome.

The model can be represented as

yi = Xiβ + εi, εi ∼ N (0,Ωi)

where

yi =

T ∗iy0i

y1i

 , Xi =

x′T i 0 0
0 x′0i 0
0 0 x′1i

 , β =

β′Tβ′0
β′1

 , and ε =

εT iε0i

ε1i

 .

Let Nj denote the sample {i : Ti = j} and nj to denote the cardinality of Nj , where j ∈ {0, 1}.
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The covariance matrix Ωi is defined as

Ωi =

ωTTi ωT0i ωT1i

ω0di ω00i ω01i

ω1di ω10i ω11i

 .

Due to the missing counterfactuals, ω01i is not identified. To simplify the notation in the subsequent

discussion, we introduce the following matrices

Ω0i =

(
ωTTi ωT0i

ω0T i ω00i

)
, Ω1 =

(
ωTTi ωT1i

ω1T i ω11i

)
, J0 =

(
I 0 0
0 0 I

)
, J1 =

(
0 I 0
0 0 I

)
,

X̃i0 =

(
x′T i 0
0 x′0i

)
, X̃i1 =

(
x′T i 0
0 x′1i

)
, ỹi0 =

(
T ∗i
y0i

)
, ỹi1 =

(
T ∗i
y1i

)
.

Thus we have J0β = (β′T , β
′
0) and J1β = (β′T , β

′
1). The complete data density function is specified

as

f (y0, y1, T
∗|β0, β1,Ω0,Ω1) =

∏
i∈N0

f (ỹi0|β0,Ωi0)1{T ∗i < 0}

∏
i∈N1

f (ỹi1|β1,Ωi1)1{T ∗i ≥ 0}

 .
In the homoskedastic model, we impose a restriction where ωTTi = 1 for the purpose of identi-

fication. We define the covariance matrices and several variables as

Ω0 =

(
1 ωT0

ω0T ω00

)
, Ω1 =

(
1 ωT1

ω1T ω11

)
,

Ω22·1 = ω11 − ω1TωT1, Ω22·0 = ω00 − ω0TωT0.

We assume that Ω22·j ∼ IG
(
rj
2 ,

Rj
2

)
for j ∈ {0, 1}.1 Under this assumption, the conditional

distribution of ωjT |Ωjj·2 ∼ N (qj ,Ω22·j). Furthermore, we specify the prior distribution of β as β

is β ∼ N (b0, B0). The estimation algorithm is summarized in Algorithm 4.

To expand the model to the case of multivariate heteroskedasticity, we decompose the covariance

matrices (Chan and Jeliazkov, 2009b) as

Ω0i = L0G0iL
′
0, Ω1i = L1G1iL

′
1,

where for j ∈ {0, 1},

Lj ≡
(

1 0
ajT 1

)
, Gji ≡

(
λT i 0
0 λji

)
.

1If Ω22·j were a matrix, the generalization would be Ω22·j ∼ IW (rj , Rj).
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Algorithm 4 (Rubin Causal (Roy-Type) Model with Homoskedasticity)

(1) Sample β ∼ N
(
b̂, B̂

)
, where b̂ = B̂

(
B−1

0 b0 +
∑
i∈N0

J ′0X̃
′
i0Ω−1

0 ỹi0 +
∑
i∈N1

J ′1X̃
′
i1Ω−1

1 ỹi1

)
, and

B̂ =

(
B−1

0 +
∑
i∈N0

J ′0X̃
′
i0Ω−1

0 X̃i0J0 +
∑
i∈N1

J ′1X̃
′
i1Ω−1

1 X̃i1J1

)−1

.

(2) Sample T ∗i ∼ TN (µT ij , ω̂TT ), where T ∗i ∈ (−∞, 0) if i ∈ N0, T ∗i ∈ [0,∞) if i ∈ N1, µ2ij =

x′T iβT + ωjTω
−1
jj

(
yji − x′jiβj

)
, and ω̂22 = 1− ωjTω−1

jj ωjT .

(3) For i ∈ Nj ,

π (ωj2|Ω22·j , β, yi, zi) = π (ωjT |Ω22·j)π (yj |z) = fN (ωjT |qt,Ω22·j)
∏
i∈Nj

fN
(
yji|µji|2,Ω22·j

)
.

where µji|2 = x′jiβj + ωjT (T ∗i − x′iTβT ). Thus the posterior distribution for ωjT

is ωjT ∼ N (q̂j , ω̂22·j), where ω̂22·j =

(
Ω−1

22·j +
(∑nj

i=1

(
ε2
T iΩ

−1
22·j

))−1
)−1

, and q̂j =

ω̂22·j

(
Ω−1

22·jqt + Ω−1
22·j
∑nj

i=1 εT iεji

)
, where εji ≡ yji − x′jiβj and εT i ≡ T ∗i − x′T iβT .

(4) For i ∈ Nj ,

π (Ω22·j |ωjT , β, yi, T ∗) = π (Ω22·j) fN (ωjT |qt,Ω22·j)
∏
i∈Nj

fN
(
yji|µji|2,Ω22·j

)
.

The posterior distribution is as follows: Ω22·j ∼ IG
(
r̂j
2 ,

R̂j
2

)
, where r̂j = rj + 1 + nj , and

R̂j = Rj + (ωjT − qt)2 +
∑
i∈Nj

(εji − ωjT εT i)2.

The model can be rewritten as(
T ∗i
yji

)
=

(
x′T i 0
0 x′ji

)(
βT
βj

)
+ Lj

(
ψT i
ψji

)
,where

(
ψT i
ψji

)
∼ N (0, Gji) ,

or

T ∗i = x′T iβT + ψT i, yji = x′jiβj + ajTψT i + ψji, ψji ∼ N(0, λji), ψT i ∼ N (0, λT i) ,

λji = exp
(
Z ′jiγj

)
, λTj = exp

(
Z ′T iγT

)
.

The prior distributions are specified as

β ∼ N (b0, B0) , γj ∼ N (γ0j ,Γ0j) , γT ∼ N (γ0T ,Γ0T ) , ajd ∼ N (a0j , A0j) ,

25



and the estimation algorithm is detailed in Algorithm 5. In our model, the average treatment effect

(ATE) and the average treatment effect on the treated (ATT) are defined as

ATE = E(Y1 − Y0) = E(x′iβ1 − x′iβ0), ATT = E(Y1 − Y0|D = 1) = E(x′1iβ1 − x′1iβ0),

and they can be estimated using the MCMC output.

Algorithm 5 (Rubin Causal (Roy-Type) Model with Heteroskedasticity)

(1) Sample β ∼ N
(
b̂, B̂

)
, where b̂ = B̂

(
B−1

0 b0 +
∑
i∈N0

J ′0X̃
′
i0Ω−1

0 ỹi0 +
∑
i∈N1

J ′1X̃
′
i1Ω−1

1 ỹi1

)
, and

B̂ =

(
B−1

0 +
∑
i∈N0

J ′0X̃
′
i0Ω−1

0 X̃i0J0 +
∑
i∈N1

J ′1X̃
′
i1Ω−1

1 X̃i1J1

)−1

.

(2) Sample T ∗i ∼ TN (µ2ij , ω̂22i), where T ∗i ∈ (−∞, 0) if i ∈ N0, T ∗i ∈ [0,∞) if i ∈ N1, µ2ij =

x′T iβT + ωjT iω
−1
jji

(
yji − x′jiβj

)
, and ω̂TTi = ωTTi − ωjT iω−1

jjiωjT i.

(3) Sample ajT ∼ N
(
âj , Âj

)
where Âj =

(
A−1

0j +
∑nj

i=1 ψ
′
T iλ
−1
ji ψT i

)−1
and âj =

Âj

(
A−1

0j a0j +
∑nj

i=1 ψ
′
T iλ
−1
ji uij

)
, where uji ≡ yji − x′jiβj .

(4) Sample [γT |yj , gj , βj ] using an MH step by drawing a proposal value γ†T ∼ q (γT |γ̂T , VT ), where
ei = T ∗i − x′T iβT and γ̂T and VT are defined similarly to (5) using the current value of γj and

T ∗i . Also use γ†T in equation (5) to produce γ̂†j and accept the proposed γ†T with probability

α = min

1,
f
(
T ∗i |a0T , a1T , βT , γ

†
T

)
π
(
γ†T |γT0,ΓT0

)
q
(
γT |γ̂†T , VT

)
f(T ∗i |a0T , a1T , βT , γT )π (γT |γT0,ΓT0) q

(
γ†T |γ̂T , VT

)
 .

otherwise the current value γT is repeated in the next MCMC iteration.

(5) Let eji =
(
yji − x′jiβj − ajTψT i

)
, ηji = z′jiγj +

e2ji−ωjji
ωjji

, and ηj =
(
ηj1, . . . , ηjnj

)′
and sample

[γj |ajT , βj ] similarly to Step (4).

In the homoskedastic case, the posterior ordinate can be estimated similarly to Section 2.1.1 us-

ing the CRT method. To estimate the marginal likelihood in the heteroskedastic model, let θ denote

the parameters (β, a1T , a0T ). The posterior ordinate of π̂(θ∗|y, T ∗) can also be estimated using the

CRT method as discussed in Section 2.1.1. The posterior ordinate of π̂ (γ∗T |y, θ∗, T ∗) , π̂ (γ∗1 |y, θ∗, T ∗) ,

and π̂ (γ∗0 |y, θ∗, T ∗) can be sampled similarly to Section 2.1.1.

26



3.1 Simulation Study

In this section, we performed a simulation study to gauge MCMC efficiency, evaluate the conse-

quences of neglected heteroskedasticity, and validate the model comparison technique. We report

mean, standard deviations, and 95% credible intervals of the posterior distribution for the treatment

effects in each model.

We run 3 simulation sets with sample size n = {500, 5000, 50000}. The data are generated from

X0 ∼ (1, N(0, 1)), X1 = X0, Xd = (X0, N(0, 1)), β ∼ N(0, I), γ0 ∼ N(0, I),

γ1 ∼ N(0, I), γd ∼ N(0, I), a0T = −0.2, a1T = 0.2.

The estimated ATE and ATT are summarized in Table 10. In all cases, the heteroskedastic

model emerges as the recommended choice based on the marginal likelihood results. These find-

ings highlight that ignoring heteroskedasticity when it is present, leads to inconsistent and biased

estimates for both ATE and ATT.

Table 10: Treatment Effects Estimation (Simulation)

Model TRUE Estimated SD 95% CI Marg. Like.

n = 500
Heteroskedastic

ATE -2.3573 -2.3030 0.1910 (-2.6775, -1.9268) -798.15
ATT -1.4987 -1.4693 0.2512 (-1.9608, -0.9737)

Homoskedastic
ATE -2.3573 -1.5441 0.2865 (-2.1134, -0.9846) -853.74
ATT -1.4987 -0.8222 -0.3577 (-1.5287, -0.1122)

n = 5000
Heteroskedastic

ATE -0.4869 -0.4704 0.1476 (-0.7504, -0.1610) -7073.77
ATT -0.5669 -0.5367 0.1546 (-0.8296, -0.2127)

Homoskedastic
ATE -0.4869 -1.4841 0.3421 (-2.1683, -0.8130) -8108.51
ATT -0.5669 -1.5631 0.3610 (-2.2862, -0.8552)

n = 50000
Heteroskedastic

ATE -1.7010 -1.6709 0.0328 (-1.7359, -1.6069) -77644.71
ATT -2.6833 -2.6595 0.0330 (-2.7244, -2.5950)

Homoskedastic
ATE -1.7010 -3.1775 0.0403 (-3.2569, -3.0985) -90039.30
ATT -2.6833 -3.3340 0.0308 (-3.3937, -3.2732)

3.2 Application: The Effect of Medigap on Healthcare Expenditure

In this application, we consider the influence of private health insurance on healthcare expenditures

of the elderly using the Medical Expenditure Panel Survey (MEPS). For individuals aged 65 and

above, Medicare provides coverage, but some seniors opt to purchase private insurance known as

Medigap to supplement their Medicare benefits. Medigap policies typically offer enhanced coverage
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compared to the basic Medicare policy, and individuals often choose them in anticipation of reducing

out-of-pocket healthcare costs.

We partition the data into two distinct subsets. One sample spans the years 2018 to 2019

prior to the COVID-19 pandemic, and the other comprises survey data from 2020. This division

accounts for the potential impact of the pandemic on individuals’ behavior. In our study, we assess

the impact of acquiring Medigap policies on out-of-pocket healthcare expenditures, employing both

heteroskedastic and homoskedastic models.

We incorporate self-perceived health status variables, the number of chronic conditions, loca-

tion, and various demographic variables as covariates that influence healthcare expenditures. We

assume that family income only affects the purchase of the private insurance, and does not alter

health care utilization directly. Variable definitions and summary statistics are presented in Ta-

ble 11. In the regression, age is standardized, and due to excessive right skew, expenditure (in

thousands of dollars) is stabilized using the square root transformation (Amaratunga and Cabr-

era, 2001). Additionally, we consider models where the variance of treatment assignment depends

on family income, and the variance of healthcare expenditure depends on age and the number of

chronic conditions. In this application, heteroskedasticity remains our primary focus, although

modeling could be generalized to explicitly model the choice of specific Medigap plans based on

their anticipated healthcare expenditures and accommodate potential endogeneity of the Medicaid

variable.

The estimated ATE and ATT are presented in Table 12. The heteroskedastic model suggests a

negative impact of Medigap on health care expenditure, while the homoskedastic model indicates

a positive impact. The marginal likelihood results recommend the heteroskedastic model for both

samples. Parameter estimates are reported in Appendix B.

4 Propensity Score

Let p(x) ≡ Pr(T = 1|x) denote the propensity score, which represents the conditional probability of

assignment to treatment given the covariates x (Rosenbaum and Rubin, 1983). There are two pop-

ular methods that utilize propensity score to mitigate the selection bias: propensity score matching

and inverse probability of treatment weighting (IPTW). The key ideas behind these models are

captured in Figure 8. Specifically, Figure 8a depicts the key assumption of selection on observables,
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Table 11: Variable Definition and Summary Statistics

Variables Description 2020 2018, 2019
5019 10226

Mean SD Mean SD

AGE AGE 73.52 6.24 73.65 6.42
FAMINC Family income (as percentage of poverty line) 4.11 3.88 4.19 3.90
NUM VISIT # Office-based provider visits 10.11 14.53 12.19 16.63
NUM CHRON # Chronic conditions 3.93 2.26 3.82 2.25
EXCHLTH =1 if self-perceived health is excellent 0.16 0.37 0.17 0.38
POORHLTH =1 if self-perceived health is poor 0.04 0.19 0.05 0.22
EXCMHLTH =1 of self-perceived mental health is excellent 0.28 0.45 0.30 0.46
POORMHLTH =1 of self-perceived mental health is poor 0.02 0.14 0.02 0.15
EMPLOYEED =1 if the person is employed 0.20 0.40 0.19 0.39
PRIVATE =1 if the person has private insurance 0.43 0.50 0.46 0.50
NORTHEAST =1 if lives in northeastern U.S. 0.18 0.38 0.17 0.38
MIDWEST =1 if lives in midwestern U.S. 0.21 0.41 0.21 0.41
WEST =1 if lives in western U.S. 0.24 0.43 0.24 0.43
MALE =1 if MALE 0.44 0.50 0.45 0.50
BLACK =1 if the person is African American 0.12 0.33 0.13 0.33
MARRIED =1 if the person is married 0.50 0.50 0.53 0.50
COLLEGE =1 if the person has a college degree 0.33 0.47 0.30 0.46
MEDICAID =1 if the person is covered by Medicaid 0.14 0.35 0.14 0.34
ANYLIM =1 if the person has a condition which limits

activities of daily living
0.48 0.50 0.47 0.50

Expenditure Total Amount paid by self or family 1434 6413 1496 4391

Table 12: Treatment Effects Estimation

Year Model Estimate SD 95% CI Marg. Like.

2018, 2019

Homoskedastic
ATE 0.0162 0.0014 (0.0133, 0.0188) 22243.61
ATT 0.0170 0.0013 (0.0144, 0.0195)

Heteroskedastic
ATE -0.0058 0.0009 (-0.0076, -0.0040) 25365.03
ATT -0.0016 0.0009 (-0.0034, 0.0001)

2020

Homoskedastic
ATE 0.0075 0.0029 (0.0023, 0.0139) 10602.64
ATT 0.0066 0.0031 (0.0015, 0.0136)

Heteroskedastic
ATE -0.0057 0.0011 (-0.0080, -0.0035) 12181.05
ATT -0.0014 0.0011 (-0.0036, 0.0008)

whereas Figure 8b demonstrates that the fundamental problem of estimating treatment effects is

caused by the missing counterfactuals. In practice, we have the observed treated and untreated

outcomes denoted by the rectangles in Figure 8b, whereas the dashed ovals are the unobserved

counterfactuals. The idea behind matching observations on the basis of the propensity score is

to generate sub-samples from the observed treated and untreated groups that are comparable to

one another as a means of uncovering the unobserved counterfactuals and estimating the desired

treatment effect.

In this section, we introduce a model to estimate the propensity score with heteroskedasticity.

Then we discuss the impacts of ignored heteroskedasticity in two settings: propensity score match-
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ing and IPTW. Both models are employed to assess the treatment effect of COVID-19 vaccination

on mental well-being.

Figure 8: Illustration

(a) Selection on Observables

X

T Y

(b) Potential Outcomes

Y1 Y0

Y0Y1

ATT

ATU

Propensity score matching (Rosenbaum and Rubin, 1983) is a popular method for estimating

causal treatment effects. The approach is instrumental in mitigating selection bias by leveraging

the propensity score as a balancing score that effectively enables the creation of comparable control

and treatment groups.

The approach is valid when x ⊥⊥ T |p(x). To see this, note that by the definition of the propen-

sity score, we have that f (T |p (x) , x) = f (T |p (x)), whereby f (x|p (x) , T ) = f(T |p(x),x)f(x|p(x))
f(T |p(x)) =

f (x|p (x)). In this sense, conditioning on the propensity score generates “balanced” samples of

treated and untreated units with similar characteristics x. Crucially, however, proper specification

of the propensity score is required for the theory to hold, so that the search for a p(x) that is

supported by the data serves as the motivation for our study, especially as it relates to possibly

omitted heteroskedasticity.

Researchers employ inverse probability of treatment weighting (IPTW) to counteract non-

randomization challenges in observational studies (Rosenbaum, 1987). Successful application of this

model necessitates accurate specification of the propensity score (Chesnaye et al., 2022), thereby

highlighting the essential inclusion of heteroskedasticity in propensity score estimation. We assign

weights to individual observations by taking the inverse of the probability associated with their

respective actual treatment status. In other words, we can calculate the average treatment effect

as

ˆATE =
1

n

n∑
i=1

TiYi
p(xi)

− 1

n

n∑
i=1

(1− Ti)Yi
1− p(xi)

.

To study this issue, we employ a heteroskedastic model for the propensity score. Owing to the
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nonlinearity of the setting, Jensen’s inequality implies that erroneously omitting heteroskedasticity

will impact the bias and consistency properties of estimators and can not be dealt with by simply

adjusting the standard errors. For i = 1, . . . , n, the heteroskedastic probit model is specified as

Ti = 1{T ∗i ≥ 0} = 1{x′iβ + νi ≥ 0}, νi ∼ N
(
0, σ2

i

)
.

In the homoskedastic case, for identification purposes we impose the constraint that the variance of

νi equals 1. In the heteroskedastic model, we assume that var(νi) = exp (z′iγ) and for identification

zi does not include a constant term. We specify the prior distributions β ∼ N (b0, B0) and γ ∼

N (γ0,Γ0). Algorithms 6 and 7 provide details on the propensity score estimation following the

data augmentation approach provided by Albert and Chib (1993).

Algorithm 6 (Bayesian Propensity Score Estimation with Homoskedasticity)

(1) Sample β ∼ N
(
b̂, B̂

)
, where b̂ = B̂

(
B−1

0 b0 +
∑
i∈N

xiT
∗
i

)
, and B̂ =

(
B−1

0 +
∑
i∈N

xix
′
i

)−1

.

(2) Sample T ∗i ∼ TN (µi, 1), where T ∗i ∈ (−∞, 0) if Ti = 0, and T ∗i ∈ [0,∞) if Ti = 1, where
µi = x′iβ, and the variance is 1.

An estimate of the marginal likelihood for the homoskedastic model and heteroskedastic models

is easily obtained as a simplification as the approach in Section 2.1.1.

4.1 Simulation

In this section, we use simulation studies to test the effectiveness of the MCMC and marginal

likelihood algorithms, and to study the impact of ignored heteroskedasticity in both the propensity

score matching and IPTW settings.

4.1.1 Simulation: Propensity Score Matching

Empirical researchers typically proceed by incorporating higher-order and interaction terms to

improve the balance of the matched samples if it failed in the beginning (Dehejia and Wahba, 1999;

Caliendo and Kopeinig, 2008). In this section, we illustrate that neglected heteroskedasticity can

lead to the emergence of imbalanced samples. The specification of a model with heteroskedasticity
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Algorithm 7 (Bayesian Propensity Score Estimation with Heteroskedasticity)

(1) Sample β ∼ N
(
b̂, B̂

)
, where b̂ = B̂

(
B−1

0 b0 +
∑
i
xi exp(z′iγ)−1T ∗i

)
, and B̂ =(

B−1
0 +

∑
i
xi exp(z′iγ)−1x

′
i

)−1

.

(2) Sample T ∗i ∼ TN (µi, exp(z′iγ)), where T ∗i ∈ (−∞, 0) if Ti = 0, T ∗i ∈ [0,∞) if Ti = 1, µi = x′iβ.

(3) Sample [γ|β, T ∗] using an MH step by drawing a proposal value γ† ∼ q (γ|γ̂T , VT ), where
ei = T ∗i − x′iβ and γ̂ and V are defined similarly as in (5) using the current value of γj and

T ∗i . Also use γ†T in equation (5) to produce γ̂†j and accept the proposed γ†T with probability

α = min

1,
f
(
T ∗i |β, γ

†
T

)
π
(
γ†|γ0,Γ0

)
q
(
γ|γ̂†, V

)
f(T ∗i |β, γ)π (γ|γ0,Γ0) q (γ†|γ̂, V )

 .

otherwise the current value γ is repeated in the next MCMC iteration.

is one step in addressing misspecification in addition to other possible approaches that can be taken,

such as considering the problem of variable selection or misspecification of the mean function.

The simulation study is based on the data in Dehejia and Wahba (1999), which comes from

the National Supported Work Demonstration (NSW) and the panel study of income dynamics

(PSID). The treatment T is the NSW participation. We believe that the variables age, education

(educ), if the subject is Black or Hispanic, if the subject is married (married), real earnings in 1975

(RE75) and real earnings in 1974 (RE94) will affect the outcome variable of interest. There are

185 observations in the treatment group, and 2490 observations in the control group. We assume

that DGP for the treatment assignment is

Ti ={−2− 0.17agei − 0.001educi + 0.3744nodegreei − 0.9630marriedi + 1.2285blacki+

1.219hispanici − 0.000005RE74i − 0.0001RE74i + νi ≥ 0}, νi ∼ N(0, agei).

We use the standardized mean difference (SMD) as a balance measure. (Rosenbaum and Rubin

(1985) and Thoemmes (2012)). A SMD exceeding 0.1 can be considered as a sign of imbalance.

(Zhang et al. (2019)). SMD is calculated as

SMD =
X̄T − X̄C√

S2
T+S2

C
2

,
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where X̄T and X̄C are the sample averages, and S2
T and S2

C are the standard deviations for the

treatment and control groups, respectively. We employ nearest neighbor matching with replacement

with a radius of 0.2 times the standard deviation of the estimated propensity score (Austin, 2011;

Chaudhuri and Howley, 2022).

Three models are estimated: the correctly specified heteroskedastic model, the homoskedastic

model with all covariates, and the extended homoskedastic model incorporating all covariates,

age squared (age2), and interactions between age and other covariates. Figure 9 shows the SMD

before and after matching. Before matching, the covariates are imbalanced. The heteroskedastic

model effectively enhances balance within both the ATE and ATT samples. In this example, the

homoskedastic model falls short of achieving balance in the ATT estimation sample. However, by

including higher order and interaction terms, the balance is improved.

Figure 9: SMD

(a) SMD (ATE) (b) SMD (ATT)

4.1.2 Simulation: Inverse Probability of Treatment Weighting

In this section, we illustrate that neglected heteroskedasticity can lead to biased and inconsistent

treatment effect estimator. We assume that the DGP for the treatment assignment is

xi ∼
(
1, TN(1,+∞) (1, 1) , TN(1,+∞) (1, 1)

)′
, β = (0.9, 1.2,−1.2)′ , Z = (X2), γ = 0.6

Ti = 1
{
x′iβ + νi ≥ 0

}
, νi ∼ N

(
0, exp

(
z′iγ
))

Table 13 summarizes the estimated ATE, and Figure 10 depicts the histogram of the estimated

ATE. Marginal likelihood results consistently favor the heteroskedastic model in all scenarios. These

findings demonstrated that the ignored heteroskedasticity can lead to biased and inconsistent ATE
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estimates. Notably, the heteroskedastic model exhibits accurate ATE representation, in contrast

to the homoskedastic model’s failure in capturing the true ATE, especially in larger samples.

Table 13: Treatment Effects Estimation (Simulation)

Model True ATE Estimate SD 95% CI Marg. Like.

n = 500 Heteroskedastic -2.6609 -2.3635 0.4591 (-3.3470, -1.7043) -247.68
Homoskedastic -2.6609 -3.2416 1.2067 (-6.2450, -1.9550) -252.71

n = 5000 Heteroskedastic -2.7663 -2.8267 0.1489 (-3.1367, -2.5564) -2421.02
Homoskedastic -2.7663 -3.1711 0.2090 (-3.6145, -2.8002) -2434.46

n = 50000 Heteroskedastic -2.8143 -2.8222 0.0476 (-2.9183, -2.7315) -23005.06
Homoskedastic -2.8143 -3.3607 0.0878 (-3.5398, -3.1963) -23116.63

Figure 10: Treatment Distribution

(a) n = 500 (b) n = 5000 (c) n = 50000

4.2 Application: The Effect of COVID-19 Vaccination on Mental Well-Being

Chaudhuri and Howley (2022) evaluate the impact of COVID-19 vaccination on mental health. The

treatment variable is an indicator of whether subject i received any dose of a COVID-19 vaccine.

This is a sample of waves 7 and 8 of the COVID-19 survey by the UK Household Longitudinal

Study (University of Essex, Institute for Social and Economic Research, 2021). This survey includes

the vaccination, demographic and mental health information of 21, 985 survey participants. The

outcome variable in this study is assessed using the GHQ-12 questionnaire, which is designed to

evaluate an individual’s mental health condition through a series of 12 questions. Each question

in the GHQ-12 is rated on a four-point scale. The resulting GHQ scores can range from 0 to

36. In the context of this particular sample, we follow Chaudhuri and Howley (2022) and reverse

the GHQ scores to improve the interpretability, such that the score is directly proportional to
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the level of mental well-being in the evaluated individuals. Summary statistics of key variables are

presented in Table 14, and analysis by propensity score matching and IPTW methods are presented

in Sections 4.2.1 and 4.2.2.

Table 14: Summary of Statistics

Control Group (12423) Treatment Group (9562)
Variables Mean SD Mean SD

GHQ-12 23.1388 6.1476 24.0396 5.6400
AGE 49.1924 15.6416 61.6679 13.8353

Burn in UK 0.8653 0.3414 0.9012 0.2984
Clinical Vulnerable 0.3417 0.4743 0.5646 0.4958

Male 0.4204 0.4936 0.4147 0.4927
Key Worker 0.2491 0.4325 0.2509 0.4335

Couple 0.6871 0.4637 0.7287 0.4446
Willingness to take vaccine 0.9059 0.2920 0.9507 0.2164

4.2.1 Application: Propensity Score Matching

We estimated treatment effects using four models. The first one is a heteroskedastic model with

variance var(νi) = exp(z′iγ), while the second model is more parsimonious with variance var(νi) =

agei. The third model is a homoskedastic model with all the covariates, and the fourth model

incorporates age2
i as well as interaction terms between age and the other covariates.

The estimated impact of COVID-19 vaccination on mental well-being is presented in Table 15.

The marginal likelihood results suggest that the heteroskedastic model with var(νi) = exp (z′iγ)

fits the data best. These results suggest that COVID-19 vaccination is expected to improve mental

health. Figure 11 and 12 show the SMD before and after matching. The figures show that for the

ATE samples, all the models can improve the balance. For the ATT samples, the heteroskedastic

model with var(νi) = exp (z′iγ) performs better than the alternatives.

Table 15: Impact of COVID-19 Vaccination on Mental Health (PSM)

ATE ATT
Model Mean SD 95% CI Mean SD 95% CI Marginal Likelihood

Heteroskedastic
(var(νi) = exp(z′iγ))

1.2018 0.2206 (0.7585, 1.6391) 2.5916 0.4681 (1.6778, 3.5173) -7687.86

Heteroskedastic
(var(νi) = age2i )

0.5227 0.1232 (0.2993, 0.7653) 1.3593 0.2237 (0.9183, 1.7994) -9337.68

Homoskedastic 0.3851 0.1179 (0.1525, 0.6109) 1.1477 0.2229 (0.7168, 1.6037) -8753.30
Homoskedastic
(Higher-order)

0.3628 0.1251 (0.1306, 0.6353) 0.9407 0.2316 (0.5139, 1.4600) -8030.50
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Figure 11: SMD (ATE Sample)

Figure 12: SMD (ATT Sample)

4.2.2 Application: Inverse Probability of Treatment Weighting

We computed the Average Treatment Effect (ATE) utilizing both a heteroskedastic model and a ho-

moskedastic model to assess the impact of COVID-19 vaccination on mental well-being, as outlined
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in Table 16. The marginal likelihood strongly supports the heteroskedastic model, and its estimate

closely aligns with the findings from propensity score matching. However, the ATE distribution’s

standard deviation, significantly larger than that in the propensity score matching section, renders

the impact of COVID-19 vaccination less precise than the propensity score matching method. The

table also demonstrates a well-known problem with inverse probability estimators, namely their

large variance because there is no guarantee that the inverse probability must be bounded. More-

over, the estimated treatment effect in the homoskedastic model lacks interpretability, because it

lies entirely outside the range of the mental health score [0, 36]. This underscores the importance

of heteroskedasticity in this context.

Table 16: Impact of COVID-19 Vaccination on Mental Health (IPTW)

Model Mean SD 95% CI Marginal Likelihood

Heteroskedastic 3.4518 1.8518 (-0.3327, 6.9847) -7633.95
Homoskedastic 54.2305 8.3413 (40.2458, 72.3875) -8753.28

5 Conclusion

This paper has studied the impact of heteroskedasticity in regression discontinuity designs, potential

outcome models, and propensity score matching. Because of the nonlinearities in these contexts,

the question of whether heteroskedasticity is present has to be addressed directly, as it can lead to

bias and inconsistency with consequences can not be handled by correcting the standard errors. In

our Bayesian context, we treat the presence of heteroskedasticity as a question of model uncertainty.

On the computational side, we develop new computationally efficient simulation-based estimation

algorithms tailored to each setting and discuss their implementation in computing marginal like-

lihoods to enable formal model comparison. Moreover, we propose an approach for reducing the

number of reduced MCMC runs required for marginal likelihood estimation in settings with multiple

parameter blocks.

Simulation studies have been provided in order to evaluate the empirical consequences of omitted

heteroskedasticity, assess the performance of the proposed estimation algorithms, and validate the

proposed model comparison techniques. Our investigation has revealed that when non-linearity

is pronounced, ignoring heteroskedasticity can result in biased estimates of treatment effects. We
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also find that the proposed MCMC methods perform well and can recover the true parameters and

models used in generating the data.

To assess the practical applicability and relevance of our methods, the paper has devoted con-

siderable attention to several applications. In particular, we have explored the impact of academic

probation on students’ academic performance, the effects of Medigap policies on out-of-pocket

healthcare expenditures, and the influence of COVID-19 vaccination on mental well-being. RDD

results suggest that academic probation improves subsequent semester GPA, while exhibiting no

discernible impact on graduation rates. Using a Rubin causal model (Roy-type model) in our sec-

ond application, we find that that Medigap policies are expected to reduce out-of-pocket healthcare

expenditures. Finally, results from propensity score matching and inverse probability of treatment

weighting indicate that COVID-19 vaccination improved the mental well-being of vaccine recipients

in the UK. Based on model comparisons in each application, we found that heteroskedastic models

were favored in all settings. The results emphasize the importance of allowing for heteroskedas-

ticity in observational observational studies of causal effects and demonstrate that the presence of

heteroskedasticity can be uncovered through model comparisons. While our analysis has primarily

centered on the effects of heteroskedasticity, we believe that other concerns such as sample selection

or endogeneity may also be present in many settings. We intend to study their impact, as well as

their interactions with heteroskedasticity, on treatment effect estimation in future work.
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Appendix A Sharp RDD: Additional Simulation Results

Table 17: ATE with Continuous Outcome Variable (Sensitivity Check)

Model True ATE RD ATE SD 95% CI

n = 500
Homoskedastic -2.2357 -2.3684 0.2494 (-2.8652, -1.8849)
Heteroskedastic -2.2357 -2.4144 0.2309 (-2.8728, 1.9686)

RDRobust -2.2357 -2.6305 0.6780 ( -4.1775, -1.0734)

n = 5000
Homoskedastic -2.2195 -2.0407 0.1271 (-2.2888, -1.7895)
Heteroskedastic -2.2195 -2.0941 0.1061 (-2.2996, -1.8834)

RDRobust -2.2195 -2.1892 0.2142 (-2.7119, -1.7242)

n = 50000
Homoskedastic -2.2092 -2.1986 0.0409 (-2.2793, -2.1191)
Heteroskedastic -2.2092 -2.1991 0.0288 (-2.2557, -2.1427)

RDRobust -2.2092 -2.0633 0.0690 (-2.2046, -1.8831)

Figure 13: ĝ with Continuous Outcome Variable

(a) β1 = β0, N = 500 (b) β1 = β0, N = 5000 (c) β1 = β0, N = 50000

(d) β1 6= β0, N = 500 (e) β1 6= β0, N = 5000 (f) β1 6= β0, N = 50000
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Appendix B MEPS: Coefficients

Table 18: Heteroskedastic Model (2020)

Parameter Mean SD 95% CI Parameter Mean SD 95% CI

βT

const -0.7584 0.0986 -0.9532 -0.5719 γT FAMINC 0.1743 0.0076 0.1594 0.1893

AGE -0.0270 0.0321 -0.0893 0.0370
γ0

const -8.6130 0.1125 -8.8395 -8.3974
FAMINC 0.1734 0.0150 0.1444 0.2032 AGE 0.4661 0.0513 0.3662 0.5676
NUM VISIT 0.0016 0.0019 -0.0022 0.0054 NUM CHRON 0.0512 0.0263 -0.0052 0.1001

NUM CHRON 0.0123 0.0144 -0.0157 0.0406
γ1

const -9.1443 0.1706 -9.4832 -8.8163
EXCHLTH 0.0111 0.0991 -0.1841 0.2049 AGE 0.4260 0.0743 0.2788 0.5715
POORHLTH 0.0431 0.1605 -0.2715 0.3550 NUM CHRON 0.0673 0.0327 0.0019 0.1296
EXCMHLTH -0.0145 0.0780 -0.1669 0.1387
POORMHLTH -0.4186 0.2427 -0.9074 0.0434
EMPLOYEED 0.1753 0.0899 0.0007 0.3535
NORTHEAST -0.0914 0.0894 -0.2693 0.0821
MIDWEST 0.1390 0.0818 -0.0176 0.3036
WEST -0.1954 0.0853 -0.3637 -0.0300
MALE -0.0746 0.0627 -0.1975 0.0494
BLACK -0.0576 0.0942 -0.2406 0.1301
MARRIED 0.0515 0.0659 -0.0781 0.1825
COLLEGE 0.0568 0.0711 -0.0841 0.1933
MEDICAID -0.9967 0.1169 -1.2317 -0.7726
ANYLIM 0.0425 0.0659 -0.0875 0.1697

b 0

const 0.0036 0.0013 0.0011 0.0062
AGE 0.0009 0.0005 0.0000 0.0018
NUM VISIT 0.0004 0.0000 0.0004 0.0005
NUM CHRON 0.0012 0.0002 0.0008 0.0016
EXCHLTH -0.0025 0.0013 -0.0050 0.0000
POORHLTH 0.0002 0.0020 -0.0037 0.0041
EXCMHLTH -0.0002 0.0010 -0.0022 0.0019
POORMHLTH 0.0009 0.0027 -0.0044 0.0061
EMPLOYEED -0.0048 0.0012 -0.0071 -0.0025
NORTHEAST 0.0025 0.0012 0.0002 0.0047
MIDWEST 0.0000 0.0011 -0.0022 0.0022
WEST 0.0017 0.0011 -0.0005 0.0038
MALE -0.0003 0.0008 -0.0019 0.0013
BLACK -0.0021 0.0012 -0.0044 0.0002
MARRIED -0.0034 0.0009 -0.0050 -0.0017
COLLEGE -0.0013 0.0010 -0.0032 0.0007
MEDICAID -0.0038 0.0011 -0.0059 -0.0017
ANYLIM 0.0047 0.0009 0.0030 0.0065

b 1

const -0.0042 0.0017 -0.0075 -0.0008
AGE 0.0008 0.0005 -0.0002 0.0019
NUM VISIT 0.0004 0.0000 0.0003 0.0004
NUM CHRON 0.0014 0.0002 0.0009 0.0018
EXCHLTH -0.0002 0.0014 -0.0029 0.0024
POORHLTH 0.0002 0.0029 -0.0056 0.0059
EXCMHLTH 0.0004 0.0011 -0.0018 0.0025
POORMHLTH -0.0054 0.0048 -0.0149 0.0037
EMPLOYEED 0.0046 0.0011 0.0025 0.0067
NORTHEAST 0.0019 0.0014 -0.0008 0.0046
MIDWEST 0.0046 0.0012 0.0022 0.0069
WEST -0.0012 0.0012 -0.0036 0.0012
MALE -0.0038 0.0009 -0.0056 -0.0020
BLACK -0.0043 0.0015 -0.0073 -0.0013
MARRIED 0.0014 0.0010 -0.0005 0.0033
COLLEGE 0.0043 0.0010 0.0024 0.0061
MEDICAID -0.0250 0.0026 -0.0302 -0.0201
ANYLIM 0.0051 0.0010 0.0031 0.0070
a0T -0.0147 0.0007 -0.0160 -0.0134
a1T 0.0175 0.0007 0.0163 0.0188
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Table 19: Heteroskedastic Model (2018, 2019)

Parameter Mean SD 95% CI Parameter Mean SD 95% CI

βT

const -0.7571 0.0636 -0.8834 -0.6312 γT FAMINC 0.1347 0.0055 0.1240 0.1457

AGE -0.0052 0.0207 -0.0456 0.0349
γ0

const -8.4420 0.0786 -8.5970 -8.2916
FAMINC 0.1512 0.0091 0.1334 0.1691 AGE 0.3319 0.0311 0.2727 0.3930
NUM VISIT 0.0020 0.0011 -0.0001 0.0041 NUM CHRON 0.0452 0.0138 0.0181 0.0719

NUM CHRON 0.0191 0.0093 0.0012 0.0376
γ1

const -8.9472 0.1254 -9.2025 -8.7126
EXCHLTH -0.0787 0.0610 -0.1980 0.0405 AGE 0.5289 0.0501 0.4290 0.6243
POORHLTH -0.0513 0.0915 -0.2332 0.1261 NUM CHRON 0.0300 0.0226 -0.0136 0.0744
EXCMHLTH 0.0584 0.0493 -0.0380 0.1543
POORMHLTH 0.0874 0.1273 -0.1648 0.3352
EMPLOYEED 0.1563 0.0596 0.0391 0.2740
NORTHEAST -0.0607 0.0584 -0.1747 0.0540
MIDWEST 0.1376 0.0528 0.0324 0.2404
WEST -0.0801 0.0531 -0.1852 0.0232
MALE -0.0064 0.0407 -0.0860 0.0725
BLACK -0.0328 0.0602 -0.1503 0.0863
MARRIED 0.1239 0.0417 0.0406 0.2057
COLLEGE 0.1140 0.0491 0.0176 0.2073
MEDICAID -1.0296 0.0750 -1.1787 -0.8822
ANYLIM -0.0015 0.0435 -0.0879 0.0846

β0

const 0.0103 0.0010 0.0084 0.0122
AGE 0.0016 0.0003 0.0010 0.0022
NUM VISIT 0.0003 0.0000 0.0003 0.0003
NUM CHRON 0.0009 0.0001 0.0006 0.0011
EXCHLTH -0.0022 0.0009 -0.0040 -0.0005
POORHLTH 0.0014 0.0013 -0.0011 0.0039
EXCMHLTH 0.0001 0.0007 -0.0014 0.0015
POORMHLTH -0.0007 0.0019 -0.0044 0.0029
EMPLOYEED -0.0055 0.0009 -0.0072 -0.0038
NORTHEAST 0.0023 0.0008 0.0007 0.0040
MIDWEST -0.0003 0.0008 -0.0018 0.0013
WEST 0.0011 0.0008 -0.0005 0.0026
MALE -0.0034 0.0006 -0.0045 -0.0022
BLACK -0.0022 0.0008 -0.0038 -0.0005
MARRIED -0.0032 0.0006 -0.0044 -0.0020
COLLEGE 0.0008 0.0008 -0.0007 0.0022
MEDICAID -0.0078 0.0008 -0.0094 -0.0061
ANYLIM 0.0046 0.0006 0.0033 0.0058

β1

const -0.0041 0.0012 -0.0064 -0.0018
AGE 0.0012 0.0004 0.0005 0.0020
NUM VISIT 0.0004 0.0000 0.0003 0.0004
NUM CHRON 0.0017 0.0002 0.0014 0.0020
EXCHLTH -0.0013 0.0009 -0.0031 0.0004
POORHLTH 0.0025 0.0017 -0.0009 0.0059
EXCMHLTH 0.0015 0.0007 0.0001 0.0030
POORMHLTH 0.0030 0.0025 -0.0020 0.0079
EMPLOYEED 0.0054 0.0008 0.0039 0.0068
NORTHEAST 0.0031 0.0009 0.0013 0.0048
MIDWEST 0.0044 0.0008 0.0029 0.0060
WEST 0.0000 0.0008 -0.0016 0.0017
MALE -0.0034 0.0006 -0.0046 -0.0022
BLACK -0.0060 0.0010 -0.0079 -0.0040
MARRIED 0.0032 0.0007 0.0019 0.0046
COLLEGE 0.0065 0.0007 0.0052 0.0079
MEDICAID -0.0264 0.0018 -0.0298 -0.0229
ANYLIM 0.0022 0.0007 0.0008 0.0035
a0T -0.0140 0.0006 -0.0151 -0.0128
a1T 0.0190 0.0006 0.0179 0.0201
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Table 20: Homoskedastic Model

2020 2018, 2019
Parameter Mean SD 95% CI Mean SD 95% CI

βT

const -0.5358 0.0632 -0.6607 -0.4121 -0.4230 0.0431 -0.5069 -0.3388
AGE -0.0383 0.0202 -0.0773 0.0020 -0.0285 0.0141 -0.0557 -0.0004
FAMINC 0.0652 0.0061 0.0534 0.0771 0.0483 0.0036 0.0412 0.0554
NUM VISIT 0.0023 0.0014 -0.0004 0.0050 0.0012 0.0008 -0.0003 0.0028
NUM CHRON 0.0149 0.0093 -0.0032 0.0328 0.0143 0.0063 0.0020 0.0267
EXCHLTH 0.0139 0.0578 -0.0991 0.1266 -0.0540 0.0386 -0.1310 0.0208
POORHLTH -0.0268 0.1084 -0.2380 0.1874 -0.0843 0.0655 -0.2127 0.0430
EXCMHLTH 0.0189 0.0461 -0.0702 0.1084 0.0484 0.0312 -0.0112 0.1096
POORMHLTH -0.3962 0.1640 -0.7170 -0.0755 0.0069 0.0919 -0.1762 0.1891
EMPLOYEED 0.2225 0.0504 0.1244 0.3218 0.2120 0.0358 0.1424 0.2816
NORTHEAST 0.0283 0.0555 -0.0801 0.1371 -0.0053 0.0381 -0.0785 0.0703
MIDWEST 0.1533 0.0508 0.0526 0.2521 0.1160 0.0357 0.0468 0.1862
WEST -0.1175 0.0511 -0.2160 -0.0182 -0.0710 0.0348 -0.1399 -0.0032
MALE -0.0560 0.0389 -0.1324 0.0199 -0.0066 0.0264 -0.0582 0.0449
BLACK -0.0461 0.0625 -0.1686 0.0775 -0.0333 0.0421 -0.1147 0.0497
MARRIED 0.1168 0.0409 0.0356 0.1948 0.1613 0.0279 0.1081 0.2159
COLLEGE 0.1204 0.0435 0.0366 0.2053 0.1667 0.0301 0.1080 0.2256
MEDICAID -1.0880 0.0747 -1.2330 -0.9413 -1.0081 0.0518 -1.1115 -0.9081
ANYLIM 0.0093 0.0424 -0.0742 0.0931 -0.0292 0.0289 -0.0854 0.0277

β0

const 0.0113 0.0024 0.0059 0.0156 0.0091 0.0012 0.0067 0.0114
AGE 0.0007 0.0005 -0.0004 0.0017 0.0016 0.0004 0.0009 0.0023
NUM VISIT 0.0005 0.0000 0.0005 0.0006 0.0004 0.0000 0.0003 0.0004
NUM CHRON 0.0010 0.0002 0.0005 0.0014 0.0007 0.0002 0.0004 0.0011
EXCHLTH -0.0024 0.0016 -0.0055 0.0008 -0.0014 0.0011 -0.0035 0.0006
POORHLTH -0.0023 0.0024 -0.0071 0.0024 0.0014 0.0015 -0.0017 0.0044
EXCMHLTH 0.0003 0.0013 -0.0021 0.0028 0.0006 0.0009 -0.0011 0.0022
POORMHLTH 0.0001 0.0032 -0.0060 0.0064 -0.0005 0.0022 -0.0048 0.0037
EMPLOYEED -0.0004 0.0016 -0.0035 0.0027 -0.0039 0.0010 -0.0059 -0.0019
NORTHEAST 0.0032 0.0014 0.0004 0.0060 0.0030 0.0010 0.0010 0.0049
MIDWEST 0.0019 0.0015 -0.0010 0.0048 0.0006 0.0010 -0.0013 0.0025
WEST 0.0022 0.0013 -0.0004 0.0048 0.0025 0.0009 0.0007 0.0043
MALE -0.0004 0.0010 -0.0024 0.0016 -0.0033 0.0007 -0.0047 -0.0019
BLACK -0.0037 0.0015 -0.0066 -0.0008 -0.0030 0.0010 -0.0050 -0.0010
MARRIED 0.0001 0.0011 -0.0022 0.0022 -0.0021 0.0007 -0.0036 -0.0006
COLLEGE 0.0050 0.0013 0.0024 0.0075 0.0042 0.0009 0.0025 0.0059
MEDICAID -0.0119 0.0020 -0.0154 -0.0075 -0.0087 0.0010 -0.0107 -0.0066
ANYLIM 0.0058 0.0011 0.0036 0.0079 0.0051 0.0008 0.0036 0.0066

β1

const 0.0213 0.0028 0.0157 0.0266 0.0204 0.0017 0.0170 0.0238
AGE 0.0015 0.0007 0.0001 0.0028 0.0011 0.0004 0.0002 0.0019
NUM VISIT 0.0004 0.0000 0.0003 0.0005 0.0004 0.0000 0.0003 0.0004
NUM CHRON 0.0010 0.0003 0.0003 0.0016 0.0012 0.0002 0.0008 0.0016
EXCHLTH -0.0008 0.0018 -0.0044 0.0028 0.0001 0.0011 -0.0020 0.0022
POORHLTH -0.0001 0.0041 -0.0080 0.0080 0.0043 0.0021 0.0001 0.0083
EXCMHLTH 0.0005 0.0015 -0.0024 0.0034 0.0006 0.0009 -0.0011 0.0023
POORMHLTH 0.0063 0.0069 -0.0075 0.0196 0.0035 0.0029 -0.0022 0.0092
EMPLOYEED 0.0015 0.0016 -0.0015 0.0046 0.0025 0.0010 0.0007 0.0044
NORTHEAST 0.0025 0.0018 -0.0011 0.0061 0.0035 0.0011 0.0013 0.0057
MIDWEST 0.0013 0.0017 -0.0020 0.0046 0.0034 0.0010 0.0014 0.0053
WEST 0.0004 0.0017 -0.0029 0.0039 0.0017 0.0010 -0.0003 0.0037
MALE -0.0026 0.0013 -0.0052 -0.0002 -0.0030 0.0008 -0.0045 -0.0015
BLACK -0.0054 0.0022 -0.0098 -0.0011 -0.0062 0.0013 -0.0088 -0.0037
MARRIED -0.0010 0.0014 -0.0036 0.0017 0.0008 0.0008 -0.0008 0.0025
COLLEGE 0.0035 0.0013 0.0009 0.0062 0.0035 0.0008 0.0019 0.0051
MEDICAID -0.0065 0.0042 -0.0147 0.0014 -0.0091 0.0025 -0.0141 -0.0042
ANYLIM 0.0063 0.0014 0.0035 0.0091 0.0038 0.0008 0.0021 0.0054
ω00 0.0007 0.0000 0.0007 0.0008 0.0007 0.0000 0.0007 0.0008
ω11 0.0008 0.0000 0.0008 0.0009 0.0006 0.0000 0.0006 0.0007
ω02 -0.0041 0.0033 -0.0123 0.0005 -0.0172 0.0009 -0.0189 -0.0152
ω12 -0.0026 0.0017 -0.0056 0.0009 -0.0021 0.0012 -0.0043 0.0006
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